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Abstract
Advances in underwater acoustic communications require the development of methods to
accurately compensate channels that are prone to severe double spreading of time-varying
multipath propagation, fading and signal phase variations. Assuming the environmen-
tal information as a key issue, this work aims to improve communications performance
of single-input-multiple-output transmission systems in such channels through the en-
hancement of their estimates used for equalization. The acoustic propagation physical
parameters of the environment between the source and the receivers are considered in
the process. The approach is to mitigate noise effects in channel identification for Pas-
sive Time-Reversal (PTR), which is a low complexity probe-based refocusing technique to
reduce time spreading and inter-symbol interference. The method Environmental-based
PTR (EPTR) is proposed that, inspired by matched field inversion, inserts physics of
acoustic propagation in the channel compensation procedure through ray trace modeling
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estimates of sparse channels. Successful experimental results were obtained with the pro-
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Resumo

Nos últimos anos, as aplicações em comunicações acústicas submarinas, como ob-
servatórios oceânicos, véıculos submarinos autónomos e controle remoto na indústria
de petróleo offshore, entre outros, têm despertado o interesse da comunidade cient́ıfica.
Avanços nessa área requerem o desenvolvimento de métodos que visam compensar os
efeitos de distorsão produzidos pelo canal de transmissão submarino no sinal recebido.
Essa distorsão é tanto mais importante quanto o cenário de comunicações comporta uma
zona de águas pouco profundas, com alcance fonte-receptor de alguns quilómetros e cerca
de cem metros de profundidade, os quais são propensos a um severo espalhamento duplo
em tempo-frequência devido a propagação de múltiplos caminhos variável no tempo,
desvanecimento e variações de fase do sinal. A compensação dessas distorções é necessária
para realizar comunicações submarinas com taxas de transmissão de, e.g., mais de 2 kbit/s.

Este trabalho tem como objetivos: investigar a influência dos parâmetros f́ısicos da
propagação acústica em comunicações submarinas coerentes de alta frequência (∼10kHz-
30kHz) em águas pouco profundas, para usar esse conhecimento em prol da melhoria de
performance de comunicações com base em modelos f́ısicos e focalização ambiental ou
“Environmental Focalization” (EF); e projetar um recetor de tempo-reverso baseado em
EF cujo desempenho de equalização com dados reais possa ser superior ao desempenho de
um recetor padrão de tempo-reverso.

A abordagem é a de mitigar os efeitos do rúıdo na identificação do canal para o proces-
sador Passivo de Tempo-Reverso (PTR), que é uma técnica de baixa complexidade de
retro-focagem para reduzir a dispersão no tempo e a interferência entre śımbolos. Para
isso, é proposto o método PTR baseado em modelos do ambiente ou “Environmental-based
Passive Time-Reversal” (EPTR), o qual usa EF, inspirado em processamento por ajuste de
campo ou “Matched Field Processing” (MFP), e insere um modelo de propagação acústica
sem rúıdo no processo para a compensação do canal, esperando com isso eliminar os efeitos
de rúıdo nas estimativas ligando assim o ambiente à resposta do canal. A EF é o processo
de ajuste dos parâmetros ambientais para obter uma resposta de canal baseada em modelo
numérico sem rúıdo que melhor corresponda aos dados observados. O método proposto tem
um carácter inovador no sentido em que a modelos fisicos, tanto quanto nos é dado saber,
não têm sido utilizados em comunicações submarinas.

A influência dos parâmetros f́ısicos de propagação acústica para modelar réplicas do canal
de comunicações submarinas tem um papel importante na seleção do espaço de busca “a
priori”, uma vez que alguns parâmetros f́ısicos são mais influentes na propagação e portanto
têm maior efeito sobre as réplicas modeladas. Assim, testes simulados de sensibilidade dos
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parâmetros f́ısicos na frequência de 14 kHz foram realizados antes do processamento com
dados reais. Embora na faixa de baixa frequência (< 2 kHz) a influência dos parâmetros
já seja bem conhecida na literatura, os efeitos desses parâmetros na acústica oceânica em
banda de frequência usual de comunicações como, por exemplo, na banda de 10kHz-30kHz,
não estão bem documentados. Espera-se com estas simulações obter informações sobre os
efeitos da distorção de parâmetros geométricos e geoacústicos, contribuindo para projetar
um processador que empregue um procedimento de focagem baseado no modelo do ambiente
onde o sistema seja usado.

O uso de um modelo f́ısico livre de rúıdo provou ser bem sucedido para resolver problemas de
MFP com frequência dos sinais usualmente abaixo de 2 kHz como, por exemplo, localização
de fontes. Essencialmente, o MFP compara, usando alguma função objetivo, um campo
medido com o conjunto de campos acústicos modelados e seleciona a réplica modelada sem
rúıdo com melhor ajuste. Inspirado pelo sucesso do procedimento utilizado em MFP e
considerando que as estimativas da resposta impulsiva do canal (CIR) sem rúıdo podem
evitar uma degradação severa do desempenho do PTR, o autor foi motivado a projetar o
EPTR que, apesar de usar banda de alta frequência (uma frequência de portador de 25,6
kHz foi usada neste trabalho), produziu resultados experimentais bem-sucedidos através
da focalização de um espaço de busca de parâmetros f́ısicos “a priori”. A focalização gera
como sáıda uma réplica de resposta impulsiva “a posteriori” sem rúıdo com melhor aptidão
na sua função objetivo. Um processador linear, que correlaciona as réplicas modeladas
com uma estimativa de resposta impulsiva, foi usado como função objetivo. Assim, o erro
na identificação da CIR causada pelo rúıdo é substitúıdo por algum erro de modelação,
que deverá ser suficientemente pequeno quando a focalização ambiental for bem-sucedida,
melhorando o desempenho das comunicações.

As simulações, usando uma frequência de portadora de 14 kHz, mostraram que os efeitos
do sub-fundo tendem a ser negligenciáveis devido à severa atenuação , sendo apenas
importante a camada superior de sedimentos. Além disso, a velocidade compressional do
som nos sedimentos afeta a CIR tanto no espalhamento no tempo como na posição das
chegadas, o que é uma caracteŕıstica importante a considerar para escolher candidatos
ao espaço de busca “a priori” para focalização, dado que para a compensação do canal
a precisão no tempo de atraso de chegada é mais importante do que a amplitude de
chegada. O perfil de velocidade do som (SSP) é um parâmetro importante na propagação
acústica, por isso é recomendável uma medição in situ com equipamento “Conductivity,
Temperature, and Pressure” (CTD) para que as réplicas candidatas no espaço de busca
sejam baseadas em simulações o mais reaĺısticas posśıveis e possibilitem ao método EF
gerar um modelo equivalente adequado, i.e., um modelo em que embora os parâmetros
f́ısicos não correspondam inteiramente ao parâmetros reais, a compensação entre parâmetros
simulados produza uma CIR que seja próxima à resposta real do canal. Os parâmetros
geométricos (i.e., a distância fonte-recetores e as suas profundidades) são em prinćıpio
os mais importantes, uma vez que causam distorção Doppler severa, muito embora a
distorção possa ser significativamente reduzida ao empregar sensores ancorados e técnicas de
reamostragem. Para a focalização ambiental, os efeitos devidos ao pequeno comprimento de
onda sugerem o uso de alta resolução no espaço de busca de parâmetros; a baixa influência
dos parâmetros do sub-fundo sugere exclúı-los da otimização, economizando assim custo
computacional sem perda significativa de desempenho de comunicações; e, os efeitos da
velocidade compressional do som nos sedimentos sugerem aumentar a amostragem do
espaço de busca deste parâmetro, visando explorar a caracteŕıstica de mudanças no tempo
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de atraso de chegada nos picos da CIR.

Os dados reais modulados digitalmente por comutação-de-fase-em-quadratura (QPSK)
recolhidos na experiência de mar “Underwater Acoustic Network’11” realizada em maio
de 2011 na costa de Trondheim (Noruega) são utilizados para testar a performance do
método de equalização proposto. Várias mensagens moduladas contendo uma imagem de
baixa resolução foram transmitidas a 4 kbit/s entre um modem acústico fundeado e uma
antena vertical de 16 hidrofones fundeada a uma distância de 890 metros. Os dados são
processados com o método EPTR, sendo então comparadas aos métodos PC-PTR padrão e
ao RegL1-PTR para análise de performance. Os resultados experimentais mostram que o
método proposto supera o PTR padrão, produzindo um ganho robusto (de um total de dez
mensagens de 100 mil bits cada, coletadas entre 24 de maio e 27 de maio, sete produziram
ganho), em erro quadrático médio. Comparando os desempenhos, o RegL1-PTR mostrou
ser o mais estável e efetivo em geral, uma vez que apresentou os maiores ganhos e em todas
as mensagens analisadas superou a performance do PC-PTR padrão. O EPTR apresentou
os segundos maiores ganhos e em setenta porcento das mensagens analisadas superou a
performance do PC-PTR. Em trinta porcento das mensagens o EPTR superou inclusive a
performance do RegL1-PTR, gerando o melhor desempenho.

As contribuições cient́ıficas deste trabalho são: (i) a compreensão obtida no processo
de empregar modelos f́ısicos e focalização ambiental para equalização e recuperação de
mensagens recebidas em comunicações acústicas submarinas, explorando a sensibilidade dos
parâmetros ambientais para adaptar um sistema de comunicação ao cenário onde é usado;
e (ii) a apresentação de um novo método baseado em PTR que otimiza os parâmetros
ambientais para modelar respostas adequadas de canais sem rúıdo para equalização, cujos
resultados usando dados reais foram bem sucedidos para um conjunto de sinais coerentes
coletados em experimento no mar. O método proposto contribui para um avanço no sentido
de incorporar o conhecimento f́ısico do meio ambiente no processamento para equalização
em comunicações digitais acústico submarina.

Palavras-chave: Comunicações submarinas, processamento de tempo-reverso, equalização,
comunicações coerentes, modelos f́ısicos de propagação, focalização ambiental.
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Chapter 1

Introduction

Preview In order to contextualize the main issues in equalization of doubly spread channels,

this chapter presents an overview of underwater acoustic communications using wireless sys-

tems, reviews the state of the art and shows the motivation of the work for developing a

channel compensation method based on inserting acoustic propagation modelling and envi-

ronmental focalization in the equalization process. Section 1.1 introduces the issues involved

in shallow water acoustic propagation and the consequent requirement for channel equaliza-

tion; Section 1.2 reviews equalization for single carrier systems, briefly outlining adaptive

equalizers and time-reversal processors. Section 1.3 presents the work motivation and intro-

duces the perspective that leads to the proposed environmental-based time-reversal method;

and Section 1.4 presents the thesis outline.

1.1 Underwater communications and equalization

Underwater communications is a research area of increasing interest to the scientific com-

munity, justified by its potential applications to transmit information for remote control of

valves in off-shore oil platforms, ocean research data assessment, telemetry for pollution mon-

itoring at sea, communication between divers, control of autonomous underwater vehicles,

military underwater communications and underwater acoustic networks, among others.

Cable underwater communication systems are suitable to be used when the transmitter

and receiver are assumed static (moored) or when one node is tethered mobile with low spa-

1
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tial coverage as, e.g., in the case of underwater Remotely Operated Vehicles (ROV) which

have limited mobility. Alternatively, wireless underwater communications could be advan-

tageously used to extend the spatial coverage of these mobile devices (or of any other device

that may require communication without using wires). Wireless acoustic systems designed

for ranges greater than few kilometers tend to have easy operation issues in comparison to

cabled devices, in general, due to the absence of a long cable in the underwater scenario.

Further, depending on the application, cable and wireless systems may be complementary.

Wireless underwater communications systems use the water medium to propagate signals,

which are affected by the physics of underwater propagation. In general, the use of acoustic

waves is the standard choice for underwater communications because the attenuation is much

lower then that of electromagnetic waves and optical waves are affected by water turbidity

[1]. Nonetheless, in some cases electromagnetic or optical waves can also be advantageously

employed.

Radio underwater communications can be done from terrestrial transmitters to sub-

merged antennas using Very Low Frequency (VLF) band (3-30 kHz), requiring high power

land-based transmitters for the signal to cover large maritime areas (few thousands of kilo-

meters) and penetrates in sea water with depth in the order of few tens of meters [2]. The

Naval Research Laboratory developed several decades ago a frequency-shift keying system

which for the first time permitted automatic operation of the Navy’s VLF transmitters at

a rate of 60 words per minute with a reasonable degree of reliability for command-control

communications with submarines [3]. Since then, systems were significantly improved in

terms of data rate although having limited range: for instance, two systems with rate up to

16 kbit/s at distances of 20 meters and rate 1-10 Mbit/s at distances less than 10 meters
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were developed by Wireless Fiber Systems [4].

Optical underwater communications can operate with very high-rate (order of megabits)

and very short range (less than one hundred meters). A modem projected by WHOI [5, 6]

for the transmission of information from an ocean observatory has the potential to transfer

rates of up to 10 Mbit/s at distances up to 90 meters in clean water with use of a receiver

based on photomultiplier tubes and a laser diode emitter. Other examples include one of the

newer versions of the AquaOptical [7] modem that achieves transmission rate of 2.28 Mbit/s

in clear water at distances of 50 meters or Blueard systems from Sonardyne [8, 9] based on

photo-multipliers.

Acoustic waves can propagate to large distances in underwater unbounded media, de-

pending on the frequency of operation, and therefore are the solution of choice for underwater

communications in applications where wired connection is disadvantageous [1]. For instance,

acoustic modems are appropriate in scenarios with ranges greater than one hundred meters

in both shallow and deep water. However, transmission loss caused by volume spreading and

frequency selective attenuation are factors determining the attainable range and bandwidth

in unbounded underwater media, limiting the data rate of acoustic transmission. Moreover,

channel impulse response with multipath (which causes time spreading on the received sig-

nal) and channel impulse response time-variability (which causes frequency spreading of the

received signal) may occur, imposing severe limitations on the system performance.

In severe multipath scenarios it is common to achieve data rates of a few hundred bit/s

for coherent communications, at best. In scenarios with mild conditions the data rate

can be higher, as described, e.g., in [10], which reported an experiment where a Multiple-

Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexer (OFDM) sys-
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tem achieved a data rate of 125.7 kbit/s over a bandwidth of 62.5 kHz. Two transmitters

with 16-Quadrature Amplitude Modulation (16-QAM) and coding were used to reach the

results, suggesting that MIMO-OFDM is an appealing solution for high data rate trans-

missions over underwater acoustic channels. This scenario had mild conditions because the

channel impulse responses in such experiment were, in general, with few multipath delays,

extending in a time window of less than 4 ms. Shallow water communication, i.e., when the

source-receiver range is several times greater than the water depth, may present long delay

time spreading, e.g., more than 15 milliseconds, depending of the scenario, thus causing

severe multipath propagation distortion.

This work focuses on shallow water acoustic communication channels, where the acoustic

waves propagate with multiple interactions with the boundaries, i.e., the seabed and the sea

surface, thus forming a natural waveguide. The acoustic field in such environment is char-

acterized by multiple constructive/destructive interferences, yielding a complicated propa-

gation pattern that can be predicted by a physical model as, e.g., ray/beam trace model,

normal modes model, parabolic equation model, to cite a few. Since the multipath propaga-

tion may form channel impulse responses characterized by several delayed arrivals after the

first arrival, severe Inter-Symbol Interference (ISI) may occurs, extending to a significant

number of adjacent symbols. Therefore, aiming to reduce the ISI and to reach successful

message recovery, it is necessary to compensate for the Channel Impulse Response (CIR)

distortion in the underwater waveguide by applying a robust coherent channel equalization

method, which should be adaptive when in presence of time-variability.

Techniques for underwater channel equalization to mitigate ISI and improve commu-

nications performance can be found in several reports in the literature. However, most of
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them are based mainly on adaptive equalizers, such as, e.g., the Decision Feedback Equalizer

(DFE) [1, 11] and/or on time-reversal processors, such as, e.g., the Passive Time-Reversal

(PTR) [12, 13, 14], which frequency domain version is known as Phase Conjugation. The

DFE principle is to track the inverse channel during a training mode operation to design

a adaptive filter which compensates for channel distortions during transmission mode. The

PTR principle is to employ the reciprocity property of the wave equation through the use of

an array of sensors connected to a multichannel receiver that perform conjugate time-reversal

filtering and summing over channels, aiming to compensate for multipath distortion. It re-

quires channel estimates for feeding the reverse filters during the message reception period,

assuming that the channel is stable in such time interval. More on these techniques are

discussed in Sec. 1.2.

Channel identification is a requirement for PTR receivers, where the CIR estimates feed

the time-reversal filters. Usually, conventional PTR employs a probe pulse with suitable

correlation properties to estimate the channel using pulse compression. However, in real data,

the channel estimation with pulse compression method is prone to noise in the received probe

signal, decreasing the accuracy of the CIR estimates. The inaccuracy in CIR estimation is

an important issue in PTR receivers, that can severely decrease its performance. A different

method of channel estimation, that may increase CIR accuracy, is the `1-norm regularization.

Since the impulse responses in shallow water channels are characterized by arrival paths and

considering that a CIR time window extends sufficiently so that there are few paths with

large energy and the other arrivals with very low energy, mostly attributed to noise, then the

CIR can be assumed sparse. This assumption opens the opportunity to use the Regularized

`1-norm (RegL1) channel estimator, that explore sparse features for increasing the CIR
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accuracy. It is widely employed in compressive sensing theory [15, 16] and can yield cleaner

CIR estimates then pulse compression, due to its higher immunity to noise and path side

lobes effects.

This work proposes another different method for CIR identification based on a processor

that employs an underwater acoustic propagation model and an environmental focalization

algorithm, which is driven by physical information of the environment, to generate the

CIR replicas that feed the PTR filters. Whether or not this model-based CIR estimate

would be suitable for employment in a real channel compensation problem would depend

on the degree of accuracy of the model. Acoustic propagation models require as input a

set of physical parameters that represent the environment where the acoustic field is to be

predicted. Usually, the parameters are the source/receiver positions and bathymetry (also

known as geometric parameters), the density, compressional/shear speed and attenuation of

the seabed (also known as geoacoustic parameters) and the sound speed profile of the water

column. In a strict sense, such physical parameters are unknown in a real environment.

In a wide sense, one may roughly estimate those parameters by assuming that a particular

area can be represented by the parameters assessed with some samples collected in-situ with

dedicated equipment as, e.g., Conductivity, Temperature and Depth (CTD), thermistor

chain, bottom grab, echo sounding and pressure gauge. Also, it may be used knowledge

from previous measurements, but this must be carefully addressed to avoid over-outdated

environmental data being used so as to no longer adequately represent the scenario.

In real data processing, unfortunately the simple employment of a set of physical parame-

ters chosen empirically as input for an acoustic propagation model will hardly represents the

actual acoustic field or actual CIR, due to lack of accuracy. It would be necessary to know
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the exact parameters that represent the actual environment, which is a hard requirement.

However, such requirement can be relaxed through the use of an “a priori” search space of

physical parameters which, after optimization, generates the CIR that best matches a noisy

observed CIR, in a process named Environmental Focalization (EF). The advantage is to

generate a noise-free “a posteriori” CIR replica which, assuming a sufficient accuracy, can

substitute the corresponding noisy CIR estimate used as reference during the optimization.

As will be shown along this work, to employ the EF method may be a suitable approach to

improve the performance of time-reversal communications in shallow water. In this sense,

the Environmental-based Passive Time-Reversal (EPTR) is proposed to improve a conven-

tional PTR receiver through the insertion of physical information of the environment in the

equalization process, using the EF method for CIR identification. The EPTR will be tested

with real data and compared with other PTR based receivers using CIR estimation based on

Pulse Compression (PC) and sparse CIR estimation based on Regularized `1-norm (RegL1).

More on the EF method is discussed in Sec. 1.3 and the EPTR receiver is later described in

details in Chap. 2.

1.2 State of the Art

Channel equalization for single carrier systems is reviewed, briefly outlining adaptive equal-

izers and time-reversal processors, using as starting point for discussion a short historical

review in digital acoustic underwater communications. Further, a discussion on environ-

mental focalization and equivalent modelling is done in the context of motivating the need

for developing a method that combine acoustic propagation physical modelling and channel

equalization.
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1.2.1 Short historical underwater communication review

Prior to the 1970’s there were a few published reports of acoustic modems. Analog systems

were developed as, e.g., an underwater telephone which permitted voice communications

between ships and submarines1, but they had no capability for mitigating the distortion

introduced by the highly reverberant underwater channel.

During the 1980’s, incoherent systems using Frequency Shift Keying (FSK) modulation

were widely employed as the best option in terms of data rate2. Since this modulation

scheme is incoherent, it does not require capturing the signal phase to recover the message.

At that time, the inability to explore the phase brought the research focus to frequency

modulation. Although it has high power efficiency, the bandwidth inefficiency inherent to

such systems restricts their use to low data rate transmissions, say less then 1 kbit/sec. The

inefficiency is caused by the requirement of sufficiently separate the FSK frequency tones

with more than the coherence bandwidth (the inverse of the multipath spread), aiming to

avoid frequency aliasing [1]. The search for improving bandwidth efficiency induced to the

research on coherent modulation [18].

Several works about coherent underwater communications systems have been published

since the 1990’s, e.g.,[12, 18, 19, 20, 21], given that coherent systems are able to overcome the

ISI caused by multipath propagation through the employment of equalization algorithms.

This more efficient bandwidth scheme contributed to move acoustic telemetry from the

well-behaved vertical deep channel (which is a reduced multipath channel) into the more

1The underwater telephone, designated the AN/UQC, was developed by the US Navy, being a suppressed
carrier single side band amplitude modulation (SSB) system operating on a carrier frequency of approxi-
mately 8 kHz, as described in [17].

2In fact, note that FSK is still widely used nowadays in applications at which low data rate, e.g. less
then 1 kbit/sec, is acceptable.
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ill-posed horizontal shallow water channel (which is a severe multipath channel). Most of

the coherent modems used a Linear Equalizer (LE) or a Decision Feedback Equalizer (DFE),

coupled with Phase Locked Loop (PLL) for carrier synchronization [11, 21]. Also during the

1990’s, research on time-reversal were developed [12]. In 1996, Kuperman et al., based on an

experiment conducted in the Mediterranean Sea, performed an experimental demonstration

of an acoustic time-reversal mirror [19]. After, avoiding the high complexity of DFE, the

passive time reversal receiver [14] emerged as a low complexity channel compensation method

to reduce ISI due to multipath, based on conjugate time-reverse filtering applied to the signals

received in a vertical array of hydrophones spanning the water column.

During the 2000’s, time-reversal phase coherent underwater communications was pro-

posed [22] and since then used in several works as , e.g., in [23, 24, 25, 26, 14].

Nowadays, channel compensation for coherent communications in shallow water often

relies in the combination of adaptive DFE equalization and PTR methods.

1.2.2 Adaptive equalizers

The adaptive DFE is a standard coherent underwater acoustic communications processor,

early employed in single-input-single-output transmissions [21]. It originates from earlier

stage non-adaptive equalization that aimed to eliminate ISI by designing an inverse filter to

revert the distortion caused by the channel, under the assumption that the channel behaved

as a FIR filter with additive noise3. As described in [11], this former non-adaptive processor is

the so-called Zero-Forcing Equalizer. The implementation of error minimization of the filter

coefficients using the MSE criterion leads to the LE [11]. Depending on the tap spacing,

3In fact, the linear equalizer is a FIR filter while the DFE is a IIR filter due to contain a feedback part
(i.e., a recursive part of a filter) additionally to the forward part.
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which could be the inverse of the symbol interval or a fraction of it, the LE is still called,

respectively, symbol spaced equalizer or fractionally spaced equalizer.

The LE is a suboptimal detector that minimizes the MSE using a transversal filter. The

optimal detector is the Maximum Likelihood Sequence Estimator (MLSE), in the sense that

it minimizes the probability of a sequence error. The MLSE can be implemented with the

Viterbi algorithm [27]. The DFE is a sub-optimum detector composed by a forward filter and

a feedback filter that aims at a better performance than the LE, which uses only a forward

filter. The feedback filter aims at removing the part of the ISI of the present estimated

symbol caused by previously detected symbols.

In non-adaptive DFE (and LE) the CIR is assumed known in the receiver [11]. However,

since in many communications systems the channel characteristics are unknown and the

channel is often time-variant in some degree, then the adaptive DFE or adaptive LE were

proposed.

Adaptive equalizers may employ the Least Mean Square (LMS) algorithm or the

Recursive Least Squares (RLS) algorithm to iteratively perform error minimization,

requiring a probe training sequence to adjust the filter coefficients during training mode.

After reaching convergence, the processor performs equalization during a direct-decision

mode. Also, equalizers that do not use the probe training sequence are proposed in [11],

performing the so-called blind equalization.

The standard adaptive DFE is accurate and broadly used in aerial wireless communi-

cations. However, in wireless underwater communications a lack in robustness may occur

mainly due to error propagation issues, a problem inherent to the iterative algorithm con-
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vergence, specially in long frames [28]. Additionally, the DFE can be used in multichannel

instead of the standard single channel configuration, aiming to yield more robust equaliza-

tion, as proposed in [29, 30].

1.2.3 Time-reversal processors

Time-reversal processors use for a vertical array of transducers the reciprocity principle of

the linear wave equation. Assuming an acoustic signal being transmitted from a source to the

array of transducers, if the received signals are time-reversed and retransmitted, the energy

of the retransmitted signals concentrates with constructive interference on the position of

the source. This principle drives the active Time Reversal Mirror (TRM) in underwater

communications [19, 24]. As described by Kuperman [31], the TRM produces a real acoustic

image of the probe source (PS) by converting a divergent wave emitted from the acoustic

PS into a convergent wave focusing on the PS. A TRM can be realized by an array of

transducers. The incident signal is received, time reversed, and retransmitted from an array

of sources collocated with the receivers.

The PTR processor, instead of transmitting the time-reversed signal through the ocean

channel from the receiver to the source, performs this operation in a computer to filter the

incoming transmitted signal. A description of PTR can be found in [14] and in a large body

of work in the literature. Despite its simplicity, PTR requires a sufficiently long and dense

array to reduce ISI, avoiding poor sampling of the high-order modes [19, 23, 32]. Also, it

requires time stationarity which is inherent to the whole PTR process. CIR estimates are

required, being typically obtained by correlating each received distorted probe signal with

the transmitted probe signal, resulting in a noisy estimate of the channel Green’s function.
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Such standard CIR estimation technique is equivalent to the pulse compression, commonly

used by radar and sonar to increase the range resolution and the signal to noise ratio. The

channel must be nearly time-invariant since PTR can not capture time variability until the

next probe.

Further, the PTR has much lower complexity than the adaptive DFE, because the former

is mostly based on cross-correlation operation. Also, PTR is more robust than the adaptive

DFE because the latter can have algorithm convergence issues when using long frames [28].

However, PTR is less accurate than DFE in the sense that significant residual ISI remains

in the PTR output signal, as described by Stojanovic in [33].

A processor derived from PTR is the Frequency Shift Passive Time Reversal (FsPTR),

proposed in [32]. Although PTR allows for the implementation of a simple communications

system, it loses performance in the presence of geometric mismatch between the probe signal

and the actual data symbols transmission. Assuming that geometric mismatch, in depth

and range, could be partially compensated by applying an appropriate frequency shift in the

PTR operator, real data results are presented in [32] with Binary Phase Shift Keying (BPSK)

modulation scheme and carrier frequency 3.6 kHz. A gain is expected for FsPTR over PTR

due to the fact that the processor in some degree compensates for the channel variability. The

results showed FsPTR achieving an overall gain of approximately 4.11 dB over a conventional

PTR processor.

Another PTR-based processor is the Beam-forming Frequency Shift Passive Time Re-

versal (BF-FsPTR), proposed in [34]. Considering the fact that each multipath wavefront

may be assumed independent, the BF-FsPTR apply an independent frequency-shift to each

wavefront, aiming to compensate for the channel variability. The wavefront means a surface



1.2. State of the Art 13

containing points affected in the same way by a propagating wave at a given time. It is

expected that the BF-FsPTR yields gain over a FsPTR processor because the latter uses

just a single frequency shift to all wavefronts, resulting in performance degradation. Real

data results are presented in [34], using a frame with bit rate 2 kbit/s and BPSK modulation

scheme, showing that the BF-FsPTR, using angular range of the beam-former from -10 to

+10 degrees, yielded a mean gain of 2.2 dB over the FsPTR, in terms of mean square error.

A probe-based channel estimation method is required by PTR (and by the methods based

on it). In its conventional form, the CIR estimates are obtained using Pulse Compression

(PC), which is a signal processing technique performed by transmitting a probe pulse and

then correlating the received signal with the transmitted pulse. A theoretical derivation of

PC can be done from the Minimum Variance Unbiased estimator (MVU) [35], as described

in Appendix A. In case the channel is approximately sparse, where the CIR, in a discrete

version, is a nearly sparse vector4, the classical PC channel estimation (based on `2-norm)

can be substituted by an approach that includes the Regularized `1-norm (RegL1) in the

`2-norm estimation problem. The advantage is to generate sparse CIR estimates less prone

to noise effects, making the channel identification process more accurate. Since PTR is very

sensitive to errors or inaccuracies in CIR estimates, the RegL1 is an attractive approach to

improve the PTR performance.

Furthermore, using an environmental model-based approach for CIR identification, this

work proposes to modify a conventional PTR receiver, replacing noisy CIR estimates by

noise-free CIR replicas generated by a physical model and optimized by an environmental

focalization algorithm. Such method is next discussed in Sec. 1.2.4.

4The vector is assumed sparse whether few elements of the vector have high values and the others have
very low values.
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1.2.4 Environmental focalization and equivalent model

In the context of incorporate acoustic propagation physical parameters in the process of

equalization of shallow water communication channels, the EPTR uses the Environmental

Focalization (EF). The form to include physical parameters in underwater acoustics is via

numerical propagation models. Although numerical models have not been used in underwater

acoustic communications, they have been proven successful in techniques such as matched-

field processing (MFP) for source localization, initially proposed by [36] and [37], (see details

in [38] and an overview in [39] and references therein); ocean acoustic tomography (OAT)

[40, 41]; and matched-field inversion (MFI) for generic environmental parameter estimation

[42, 43]. There exists a large body of work, with a variety of processing techniques with

their particularities and application fields, but they all have one common feature: they feed

environmental information in numerical models and compare the output to experimental

data.

The EF is based on the process of tweaking the “a priori” environmental parameters

contained in a search space that, after being optimized under the criterion of a particular

objective function, generates the “a posteriori” physical parameter that corresponds to the

acoustic field replica that best matches the observed acoustic field. In this work, we are

interested in obtain the “a posteriori” CIR instead of an acoustic field. By expanding

the number of parameters in the search space to include an additional narrow search over

parameters previously known “a priori”, the EF may reach a better adjustment in the

objective function, thus making it possible to reduce mismatch between the CIR replicas

and the CIR estimate.
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Collins et. al. [43] first demonstrated the EF in source localization, showing that the

acoustic adjustment was increased if, not only the unknown parameters were included in

the parameter space, but also the known parameters, which resulted in that the known

ones would vary to slightly different values, improving the acoustic adjustment and thus

improving the location of the source. Eventually the search space was adjusted differently

to the known and unknown parameters, being more restricted to the first ones and more

extended to the second ones.

The EF yields an equivalent model driven by the better combination of parameters that

maximizes the acoustic field adjustment. The concept of using a equivalent model is fully

described in [44] and essentially consists in employing a set of acoustic propagation physical

parameters to generate an environmental model that maximizes a particular objective func-

tion, regardless on whether that parameter set in fact represents the actual environment.

The environmental model is named “equivalent” in the sense that it better matches with the

observed channel under the metrics of the objective function.

The acoustic field is defined by a large set of environmental properties, which vary with

space and time. Due to the limitations in observing these quantities with a fine space-time

discretization, it is essential to know the degree of dependence of the acoustic field on each of

them. Therefore, when aiming to use techniques as matched field processing or environmental

focalization, for which the equivalent environmental models are a by product, one of the first

steps is to understand the relative importance of each environmental parameter. In this sense,

an analysis based on a set of simulations is later performed in Chap. 3 on the sensitivity of

physical parameters of the environment.

In EF, one can expect to find some degree of compensation between physical parameters,
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since there is a correlation between the effects of some physical parameters on acoustic

propagation. For example, a high density on the seabed is expected to occur along with a

high compressional sound speed on the seabed, because both are found on a high reflection

seabed (see typical geoacoustic parameters in Table 3.2 [45]). Thus, in this sense, the seabed

density and the seabed compressional sound speed are correlated. In [44], Martins presents

a study quantifying the compensation between several parameter pair for a transect with 5

km source-receiver range and frequencies multi-tones in the 100-1000 Hz band. Such work

clearly shows, for low frequency band, that a significant compensation between different

acoustic propagation physical parameters may occurs.

Therefore, in order to obtain an accurate CIR replica in a situation of environmental

mismatch, the EF must find a set of environmental parameters that, in some degree, com-

pensate for that mismatch. These parameters form the equivalent model obtained from the

best combination between the CIR replicas in a given search space and the CIR estimate.

Even if this equivalent model does not actually correspond the real environment, the CIR

it generates is the closest to the CIR estimate used as a reference for optimization, with

the advantage of being noise-free. This noise-free CIR replica can replace a noisy CIR es-

timate in PTR, and if the former is sufficiently accurate, communications performance can

be increased.

1.3 Motivation

The motivation of this work is based on (i) the need to perform channel equalization in

coherent underwater acoustic communications, specially in shallow water, and on (ii) the

possibility of including information on the physics of acoustic propagation in the process of
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channel equalization, because the physical parameters of propagation severely influence the

channel impulse response. It is expected that using the environmental focalization method

to obtain noise-free modeled CIR estimates for feeding time-reversal filters, we can lead

to improved communications performance, assuming that a low level of modeling error is

achieved by the EF processor. The method relies on ray trace numerical modelling to

compute the impulse response of shallow water waveguides and on an EF algorithm designed

to compute the channel impulse response replica that best matches a channel estimate. Also,

the method must be validated by successful results of real data processing from a coherent

underwater acoustic communication sea trial.

Taking into account that: (i) shallow water communication channels present multipath

propagation where the CIR is composed by path delays spread in time, and if not com-

pensated or equalized, such channel severely degrades the communication performance; and

(ii) inevitably the CIR and its variability in space and time is related to the same variabil-

ity of the physical parameters of the channel; we formulate the following set of hypothesis:

(i) the use of a physical model driven by a particular set of physical parameters chosen to

represent the actual environment can generate a CIR estimate that is accurate enough to

perform channel equalization with real communications data; and (ii) the computation of a

CIR sufficiently accurate for successful channel equalization can be automatically performed

by an optimization algorithm that focalizes, from an “a priori” search space, an accurate

“a posteriori” CIR replica to compensate the channel. In this thesis the above hypotheses

are extensively tested with the goal of improving communications performance through the

inclusion of physical information of the channel, collected from the environment where the

system is employed. The Environmental-based Passive Time Reversal (EPTR) processor is



18 Chapter 1. Introduction

proposed in this context, and its expected advantages are two fold: increase communications

performance through noise effects mitigation in CIR estimates; and make the communica-

tions system more robust because the physics of the channel where the system is located is

included in the equalization process.

1.3.1 Promissory perspective

This work proposes to incorporate physical information of the environment where the com-

munication signals propagate, through the use of physical numerical models, in the process

of equalization of shallow water communication channels based on a PTR receiver. The EF

(as well as MFP) feeds environmental information in a numerical model and compare the

output to real data. In that sense this technique is called as “model-based” as opposed to

“data-driven” only.

Many studies carried out with model-based techniques refer the difficulties to favorable

compare modeled and experimental data in the high frequency range, say, above 2 kHz. This

seems to be the reason why, to the best of the author’s knowledge, there are no reports on

the usage of physical numerical models to design CIR replicas for channel equalization of

real underwater acoustic communications data. In our case we are not interested in phys-

ical parameter estimation (as would be the case of MFP), but solely in CIR modeling for

the EPTR. The physical models Bellhop and Bounce [46, 47] are used as forward acoustic

propagation models for generating CIR candidate replicas search space. EPTR has a draw-

back of expending more computational cost than PTR. In spite of that, the advantages of

EPTR over the conventional PTR are to achieve noiseless CIR estimates and perform chan-

nel compensation together with a (secondary) physical parameters assessment. The noiseless
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estimates may, if the environmental focalization succeeds to reduce modelling error, improve

the performance in time-reversal underwater acoustic communications.

1.3.2 Objectives

The objectives of this work are summarized as follows:

1. To investigate the influence of acoustic propagation physical parameters in underwater

communications in order to get understanding on how modelling of shallow water

acoustic propagation could be useful for channel equalization;

2. To design an environmental model-based channel equalizer which inserts physical infor-

mation of the environment in the process of channel compensation, through the usage

of acoustic propagation model and environmental focalization algorithm, in order to (i)

improve communications performance and (ii) make the system more robust relying in

the fact that physical information from the environment where the system is employed

is considered during the equalization processing; and

3. To validate the EPTR with real data, comparing its performance with the conventional

PTR based on PC channel estimation (PC-PTR) and the PTR based on RegL1 sparse

channel estimation (RegL1-PTR).

1.4 Thesis outline

The thesis is structured as follows:

Chapter 2 describes the data model and the various PTR-based methods of channel

equalization, i.e., the conventional PC-PTR, the sparse RegL1-PTR and the EPTR driven
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by the model-based EF method. Since the latter uses a CIR estimate for focalization, two

configurations are presented as PC-EPTR and RegL1-EPTR.

Chapter 3 describes aspects of the underwater acoustic propagation modeling in shallow

water and presents simulations of standard time-reversal processing in underwater acoustic

communications, testing the system sensitivity to the variability of physical parameters.

Chapter 4 presents the UAN11 sea trial and the results of real data processing with

EPTR, including a long term analysis. The EPTR performance obtained from real data

results is analyzed and compared to the performance obtained from PC-PTR and RegL1-

PTR.

Chapter 5 concludes the thesis, showing the advances in communications performance

obtained with the proposed EPTR receiver based on EF method, presents the scientific

contributions and, finally, indicates future directions.



Chapter 2

Methodology and data model

Preview This chapter presents a detailed description of Passive Time Reversal (PTR) and

the Environmental-based Passive time Reversal (EPTR), using as channel identification the

methods Pulse Compression (PC), Regularized `1-norm (RegL1) and Environmental Focal-

ization (EF). The appropriate combination of these methods yields the receiver configurations

PC-PTR, RegL1-PTR, PC-EPTR and RegL1-EPTR, which are further tested with real data

in chapter 5. Section 2.1 presents the methodology for channel identification in the four

cases, and how it is applied to time-reversal filtering; Section 2.2 presents the system data

model; Section 2.3 presents the standard PTR; Section 2.4 presents the PC channel estima-

tion; Section 2.5 presents the sparse channel estimation RegL1; Section 2.5 presents the EF

channel estimation; and Section 2.6 presents the proposed EPTR based on environmental

focalization.

2.1 Methodology

The methodology adopted in this work is to verify the degree of sensitivity of three channel

identification probe-based methods: Pulse Compression (PC), Regularized `1-norm (RegL1)

and Environmental Focalization (EF). PC and RegL1 are well-known CIR estimation meth-

ods that may be applied in PTR receivers and EF is the proposed model-based estimation

method for the EPTR. These methods are described in this chapter in the context of its appli-

cation in time-reversal communications in shallow water, where CIR present time spreading

due to multipath. The degree of accuracy in the CIR estimates generated with each method

21
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will significantly affect the efficacy of the time-reversal filtering in compensating for the

multipath channel.

The application of the channel identification methods mentioned above results in the

following configurations of time-reverse receivers: (i) PC-PTR, using the conventional PC

method based on `2-norm; (ii) RegL1-PTR, using the sparse estimation method based on

`1-norm regularization; and the proposed EPTR using the EF method based on physical

modelling of CIR replicas that best match a channel estimate. Since the Environmental

Focalization (EF) uses an estimate as reference in its objective function, then we have two

sub-configurations of the EPTR method, that are (iii) PC-EPTR and (iv) RegL1-EPTR.

Figure 2.1 shows the four combinations of channel estimation methods for time-reversal

communications that are tested in this work.

Figure 2.1: Methodology to test EPTR and compare performance with PTR: four possibilities for
channel identification applied to time reversal underwater communications: (i) PTR with pulse
compression (PC-PTR), (ii) PTR with `1-norm regularization (RegL1-PTR), (iii) EPTR with
pulse compression (PC-EPTR) and (iv) EPTR with `1-norm regularization (RegL1-EPTR).

The PC-PTR and the RegL1-PTR are well-known in literature and are used in the present

work for performance comparison. The PC-EPTR is the proposed environmental model-
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based in its standard form using pulse compression and the RegL1-EPTR is its modified

form for comparison to numerical modeled channel replicas for sparse channel estimates.

2.2 Communication system data model

The transmission of a data stream at one single source and received at an array of L

receivers Single-Input-Multiple-Output (SIMO) in the ocean is modeled as an input signal

s[n] being convolved with the CIR gl[n, k], which represent the ocean channel between the

source location and each individual receiver l and where implicitly the ocean is supposed to

be a linear system, added to the noise component wl[n] assumed as wide sense stationary

uncorrelated random noise, to yield the output yl[n], where the subscript l denotes the l-th

channel. Figure 2.2 shows the block diagram of a SIMO system with L channels, in baseband

equivalent discrete representation.

Figure 2.2: Ocean data model as a Single-Input-Multiple-Output (SIMO) system with L channels
in baseband equivalent representation. Input signal s[n], discrete CIR gl[n, k], noise wl[n] and the
output signals yl[n] for the l-th channel.

The signal s[n] is the baseband equivalent discrete version of the real transmitted pass-

band signal s̃(t) = Re
[
s(t)ej2πFct

]
heterodyned to the carrier frequency Fc.

A bit stream message m[i] is digitally modulated with a phase shift key scheme to form

the symbol sequence a[i], which after being up-sampled with symbol interval Ts and filtered
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with a pulse shape raised cosine filter p[n], whose frequency response is designed to have no

ISI at the sampling instants, to yield the discrete baseband signal

s[n] =
∑
i

a[i]p[n− iTs], (2.1)

where the M-PSK modulated symbol sequence message is given by

a[i] = ej2π(m[i]−1)/M , m[i] ∈ [1, ...,M ] (2.2)

with M denoting the symbol map size. The symbol sequence a[i] is assumed to be a random

sequence with uniform distribution, thus the baseband equivalent transmitted signal s[n] is

also random. Note that the implementation of the PTR requires the transmission of probes

for channel identification so, during channel probing, message bearing signal s[n] will be

replaced by a probe signal. As it will be seen later on, that probe signal will be required to

have a sharp autocorrelation function.

The received signal, in the case of a linear time-invariant system, is assumed to be given by

the convolution between the channel impulse response and the transmitted signal. However,

in a time-variant system this is not valid. Instead, an integral operation that performs

time-variant filtering must be done. The time-variant CIR for a particular source-receiver

transect can be represented by the two-dimensional complex baseband variable g[n, k], where

the discrete delay-dimension k is the reduced time CIR snapshot coordinate, while several

sequential snapshots may be recovered along the discrete true time variable n. Note that

each CIR snapshot represents a state of the time-variant channel in a particular time instant

and its replica can be modeled by computing the path gain and delay pair generated by an

appropriate underwater acoustic propagation model. Thus, assuming hereafter a complex
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baseband equivalent representation, the noisy received signal y[n] is given by

y[n] =
∑

g[n, k]s[n− k] + w[n], (2.3)

where w[n] denotes additive random noise.

Equation (2.3) can be rewritten as a function of P CIR snapshots, being the p-th snapshot

denoted as the vector gp[k], which are contained in the two-dimensional time-variant CIR

denoted as the matrix G which entry is n, k, that is Gnk = g[n, k]. Using matrix notation,

one may assume s ∈ CK×1, G ∈ CP×J and g ∈ CJ×1 to form the discrete CIR matrix

GT = [g1,g2, ...,gP ], where gp is the p-th CIR snapshot vector, P = K + J − 1 is the

convolution size and the superscript T denotes transpose. Thus, the discrete time-variant

system is given by

y = diag(SGT ) + w, (2.4)

with

yT = [y[0], y[1], ..., y[P − 1]], (2.5)

S =



s[0] 0 . . . 0

s[1] s[0] . . .
...

...
... 0

s[K − 1] s[K − 2] s[0]

0 s[K − 1]
...

0 0
. . .

...
...

...
...

0 0 . . . s[K − 1]


, (2.6)

G =


g[1, 0] g[1, 1] ... g[1, J − 1]
g[2, 0] g[2, 1] ... g[2, J − 1]

...
...

. . .
...

g[P − 1, 0] g[P − 1, 1] ... g[P − 1, J − 1]

 , (2.7)

wT = [w[0], w[1], ..., w[P − 1]], (2.8)
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where matrix S has a Toeplitz structure and is computed from zero-padded s with S ∈ CP×J .

When sufficient compensation for the Doppler effect in g[n, k] is performed, the snapshots

are kept nearly invariant along time and g[k] ' g[0, k]. Thus the received signal becomes

y[n] '
∑
k

g[0, k]s[n− k] + wl[n] '
∑
k

g[k]s[n− k] + w[n] ' s[n] ∗ g[n] + w[n] (2.9)

where symbol ∗ denotes convolution. Further, instead of using g[k] ' g[0, k] that assumes

an initial snapshot to represent the CIR, one may appropriately use the mean along n axis

g[k] ' ḡ[n, k]. When an array of hydrophones is being used, the received signal is given by

yl[n] '
∑
k

ḡl[n, k]s[n− k] + wl[n] ' s[n] ∗ gl[n] + wl[n] (2.10)

where l represents the hydrophone.

2.3 Passive time reversal

When applied to communications the usual data frame of s[n] in composed of a probe signal

followed by the data signal, where the probe signal is used to estimate the channel response

ĝ[n] and the data signal contains the payload, i.e., the baseband version of the symbol

sequence message.

Figure 2.3 shows the PTR receiver block diagram, assuming L channels, in baseband

equivalent discrete representation and with the use of square root raised cosine filters split

between the transmitter and the receiver for pulse shaping [11, 18]. The l-th channel output

yl[n] is the input to the pulse shape p[n] followed by a conjugate-reverse filter ĝ†l [−n] fed by

the CIR estimate ĝl[n], with the superscript † denoting conjugate, yielding the l-th output

zl[n] . After summing, the PTR output z[n] is generated.

The PTR is known as a low complexity channel equalizer that uses multichannel probing
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Figure 2.3: The PTR receiver diagram for a SIMO system with L channels in baseband equivalent
representation. The received signals yl[n] are passed through square root raised cosine filters p[n]

then through conjugate time-reverse filters ĝ†l [−n] based on discrete CIR estimates ĝl[n] and then
summed to yield the final PTR output signal z[n].

for time signal refocusing, thus reducing inter-symbol interference caused by multipath prop-

agation. Since the PTR equalizer performs time-reversal matched-filtering of the received

signals on each channel with the CIR estimates and assuming that the pulse shape p[n] is

a square root raised cosine filter split between the transmitter and the receiver, the PTR

output is given by

z[n] =
∑
l

zl[n] =
∑
l

yl[n] ∗ p[n] ∗ ĝ†l [−n] (2.11)

Substituting (2.1) in (2.11) yields

z[n] =
∑
l

a[n] ∗ p[n] ∗ gl[n] ∗ p[n] ∗ ĝ†l [−n] + wl[n] ∗ g†l [−n] ∗ p[n] (2.12)

The PTR output, disregarding the noisy component of (2.12), may be rewritten as

z[n] =
∑
k

I[n− k]Q[n] (2.13)

with

I[n] =
∑
k

s[k]R[n− k]; R[n] =
∑
k

p[k]p[n− k] (2.14)

and

Q[n] =
∑
l

∑
k

ĝ†l [k]gl[n− k] (2.15)

The R-function is the auto-correlation of the pulse shape and the I-function is defined as
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the convolution of the R-function and the transmitted signal. The Q-function represents the

cross-correlation between the estimated and the actual CIR summed over the channels. The

Q-function is particularly useful as an indicator of the PTR performance, since an impulse-

like shape generally means a successful compensation of the multipath distortion. In real

data processing the Q-function computation is precluded because, unlike for simulated cases

where the actual Channel Impulse Responses (CIRs) are assumed known and are correlated

with the corresponding CIR estimates and summed over the channels, with real data the

actual CIRs are unknown and only CIR estimates are attainable. Thus, one may not to check

whether the Q-function has impulse-like shape for the analysis of the PTR performance.

However, an equivalent criterion can be used for measuring such performance by computing

the PTR output power.

In order to obtain the CIR estimate ĝl[n], the transmitted probe signal and the corre-

sponding received noisy probe signal are required. Such CIR estimate can be contaminated

by noise in different degrees depending on the adopted estimator. Sections 3.4, 3.5 and 3.6

present three estimators: Pulse Compression (PC) the classical minimum variance unbiased

estimator, Regularized `1-norm (RegL1) for sparse channels and Environmental Focaliza-

tion (EF) inspired by matched field processing. The latter is the core of the proposed EPTR

method.

A detailed description of the time-reversal technique in terms of matched filter approach

is presented in [48], describing the Signal to Noise Ratio (SNR) equation for the output of a

matched filter, and then extending the concept to the similar cases of Matched Field Process-

ing (MFP) (that employs a modelled channel replica as matched filter) and the time-reversal

(that employs a probe-based channel estimate as matched filter). The work concludes that
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MFP and PTR may be cast as matched-filters and straightforwardly highlights the difference

between MFP and PTR as the type of matched filter employed, which in the MFP case is

a noise-free CIR replica and in the PTR case is a CIR estimate contaminated by noise, and

therefore is shown to outperform PTR, under no or moderate model mismatch situations.

2.4 Pulse-compression channel estimation

The PTR processing requires a channel estimate, which in its conventional form is performed

by pulse compression (PC), that is based on classical `2-norm estimation. The PC can be

derived from the Minimum Variance Unbiased estimator (MVU), as described in Appendix

A.

Assuming a set of linear time-invariant systems corresponding to L hydrophones, with

the l-th channel impulse response denoted by gl, the l-th received signal is given by

yl = Sgl + wl, (2.16)

with yl ∈ CP×1, gl ∈ CJ×1, wl ∈ CP×1 and S ∈ CP×J . Thus, the MVU estimator is

ĝl = (SHS)−1SHyl (2.17)

and the estimator covariance is

Cĝl = σ2
wl

(SHS)−1, (2.18)

where σ2
w denotes the variance of additive white Gaussian noise. Note that the autocorre-

lation and cross-correlation properties of probe signal s directly affect the estimator perfor-

mance, where it would be wise to use a probe that makes the matrix inversion in (2.17) to

appear close to diagonal. This is because the estimator variance depends on the input signal

matrix SHS. Thus, aiming at minimizing the estimator variance, the input vector s must be
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chosen to make SHS as near to diagonal as possible.

In the particular case of this matrix being identity, the PC is yielded by a simple cross-

correlation solution that for the l-th hydrophone is given by

ĝl = SHyl. (2.19)

2.5 Regularized `1-norm channel estimation

Shallow water communication channels are characterized by arrivals of wavefronts, being the

CIR envelope shape generally formed by a few peaks representing path arrivals at particular

delays. Thus, if the CIR time window is long enough, a vector representing the discrete CIR

will have a few delays with high amplitude (i.e., the arrival paths) and many other delays

with very low amplitude. This characteristic leads us to the assumption that shallow water

environment CIRs may be considered as sparse.

The concept of sparsity means that the number of significant elements in a vector (or

matrix) is much smaller than the total dimensionality of the vector. Observing that the `0-

norm of a vector x equals the count of its nonzero elements, i.e., ‖x‖0 = {# of n : x[n] 6= 0},

then the sparsity can be given by ‖x‖0 � {# of n : x[n]}.

Therefore, since a shallow water CIR is assumed sparse, its estimation can be done by

employing sparse techniques for channel identification instead of classical `2-norm-based

estimation. In particular, this work employs Regularized `1-norm (RegL1) [49] method

for sparse channel estimation yielding improved accuracy, with side lobes and noise effects

mitigation, due to the enhancement the most significant elements in a discrete CIR vector.

It is inspired by Compressed Sensing (CS) theory [15, 50] and find applications in several

study fields, among them, communication channel estimation.
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The use of `1-norm instead of `0-norm is justified by the advantages of avoiding non-

convex optimization problems, which are much harder to solve than convex optimization.

The convexity issue can be shortly illustrated in reduced dimension (tri-dimensional basis,

for the sake of clarity) by analyzing the `2 hypersphere. Figure 2.4 shows in (a) to (d) the

hyper-surfaces for the cases when norm are respectively `0.5, `1, `2 and `10 (the plane for

a hypothetical Ax = b system is not shown). The first case is clearly non-convex, requiring

Figure 2.4: Snapshot of the hyper-surfaces for `0.5, `1, `2 and `10-norm.

procedures to reach uniqueness. The other cases are convex and in particular the `1-norm is

the smaller norm that is still convex. Observe the expansion of each `p error sphere centered

at origin, that then shall be blown until touching a plane representing the system Ax = b

(not shown). For the special case of the `1-norm the hypersphere tends to find a solution that

touches the plane in some point in the edge, so that the three coordinates of such point have
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a particular value to an axis and null value to the other orthogonal axes. Thus, the point

tends to be represented by a sparse 3-D vector. Although for higher dimensionality cases

representation is not possible, the same idea is extended to the sparsity of higher dimension

vectors.

Relaxing the `0-norm to the `1-norm, a straightforward suboptimal solution is yielded

if the Restricted Isometry Property (RIP) described in [51] is accomplished. A method

that solves the minimization problem is named Basis Pursuit [52], in which case convex

optimization solutions can adopt an interior point method [53] or a greedy algorithm. The

methods Least Angle Regression (LARS) [54] and Least Absolute Shrinkage and Selection

Operator (LASSO) [55] are solvable with greedy algorithms, where the latter proposes to

minimize the least square error subject to the `1-norm of the solution vector that should be

smaller than some noise threshold εw . Using an unconstrained optimization approach based

on LASSO, the RegL1 estimator is given by

ĝ = arg min
g
{1

2
‖Sg− y‖2

2 + γ‖g‖1} (2.20)

where the scalar γ is a regularization parameter contained in the interval [0,∞). The

derivation of (2.20) is described in Appendix B.

A suitable algorithm to solve this problem, among other options, is the Iterative

Reweighed Least Squares (IRLS) [56]. Assume G as a diagonal matrix with diag(G) = |g|,

thus we have ‖g‖1 ' gTG−1g. Note that the `1-norm is showed here as an adaptively-

weighted version of the squared `2-norm. With this approximation, the problem to be

solved is

ĝ = arg min
g
{γ gTG−1

k−1g +
1

2
‖Sg− y‖2

2} (2.21)
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Since this problem does not have a closed form solution as is the case for the `2-norm-based

methods MVU and PC, it will require an iterative numerical algorithm. Thus, the quadratic

optimization problem in (2.21) is solvable using linear algebra as shown in Table 2.1 [57].

Table 2.1: Procedure of IRLS for solving the quadratic optimization problem (2.21).

Initialize the iteration k = 0, set the initial approximation (chosen
arbitrarily) g0 = 1 and set the initial weight matrix G0 = I.

Achieve the main iteration with the increment of k by 1, and apply
these steps:

1. Execute regularized least-squares to approximately solve
the linear system (2λG−1

k−1 + STS)g = STy iteratively (several
conjugate- gradient iterations may suffice), producing result gk;

2. Update the diagonal weight matrix G using gk, with
Gk(j, j) = |gk(j)|+ εw; and

3. Verify the stopping rule in such form that if ‖gk − gk−1‖2

is smaller than some predetermined threshold, stop, or otherwise,
apply another iteration.

The generated gk is the RegL1 output.

2.6 Environmental focalization channel estimation

The environmental focalization processor aims at generating noise free channel replicas for

time-reversal matched-filtering implementation of the PTR. This focalization is done over a

given number of environment candidates and selects those that best match the PC or RegL1

CIR estimate extracted from the observed data.

In PC-EPTR mode, the PC estimated CIRs are used to select the “a posteriori” replicas

from within an ensemble of possible channel responses generated from an “a priori” search

space defined through a set of environmental parameters. This process of tweaking the

environmental parameters to obtain a noise-free numerical model generated CIR that best

matches the observed channel, is termed “environmental focalization” (EF). In RegL1-EPTR
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mode, the process is the same except that RegL1 estimated CIRs are used instead of the PC

estimated CIRs.

The details of the EF block section is given in the diagram of Fig. 2.5. The “a priori”

Figure 2.5: Block diagram of the environmental focalizer for EPTR implementation, which is used
for obtaining the CIR replica from an “a priori” search space that best matches a CIR snapshot
estimate. A set of “a priori” parameters are used to generate the search space of model-based CIR
replicas which are optimized, in the sense of best match a CIR estimate, using exhaustive search
with a Bartlett processor. The output are the “a posteriori” parameters and the corresponding
noise-free CIR replica generated from these parameters.

physical parameters are provided by the user to the focalization block, in which the core

optimization is performed. A search space generator creates Ψ combinations of D physical

parameters where θd,φ is the d-th physical parameter related to the ψ-th candidate replica in

the search space. Thus, the corresponding ψ-th baseband equivalent modeled CIR snapshot

with a particular set of parameters is generated for the l-th channel as ğl[n, θd,φ]. After

optimization by exhaustive search using the Bartlett processor [38] as objective function
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that compares the replicas with the observed CIR estimate ĝl[n, θd] (obtained, e.g., from PC

or RegL1), the best match identified by the ψb replica is output as ğl[n, θd,ψb ].

In general, it is important to note that environmental focalization results depend on

an appropriate choice of “a priori” search space data. For instance, the use of a search

space too large can generate ambiguity and an unrealistic set of “a posteriori” CIRs, making

the channel compensation to fail due to excessive mismatch in the output of the objective

function optimization. On the opposite, a too narrow search space would not allow enough

degrees of freedom for the model, potentially leading to severely biased CIR estimates.

In this work, the Bellhop and Bounce models [46] are jointly employed to simulate model-

based CIRs. The scenario declared a priori can be a range dependent ocean waveguide with a

layered seabed. The Bounce model computes the reflection coefficients of the layered bottom

to be used as input for the Bellhop model which computes amplitudes and delays of arrival

paths.

Successful results depend, in some degree, on an appropriate choice of the search space,

which can be obtained by prior environmental assessment of the area of interest based on

in-situ measurements or by using background historical data. The choice of the set of

environmental parameters to be included in the search space is a compromise between a

meaningful CIR model to mimic all CIRs during a given time frame and the computational

load to run the optimization. A high number of optimization parameters may become

quickly computationally prohibitive, due to the use of exhaustive search that compares all

the replicas in the search space, thus requiring an appropriate search space size (e.g., few

thousand replicas). These two objectives converge to selecting environmental parameters

along a hierarchical list from the most to the least influential parameters on the output
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modeled acoustic field. This hierarchy is known to put on top of the list the geometrical

parameters as for example source depth, source-receiver range, and receiver depth, and

down on the list the geoacoustic parameters, in particular the density and compressional

attenuation.

The optimization is performed using a Bartlett objective function to select a small set

of refined CIR candidates that best correlate with the pulse-compressed or RegL1 estimated

observed CIR. The objective function employed in this work is defined in time-domain by

B(ψ) =
ğHl [n, θd,ψ] C[n, θd] ğl,p[n, θd,ψ]

‖gl(n, θd]‖2 ‖ğl(n, θd,ψ)‖2
, (2.22)

with the covariance matrix of observed data being

C[n, θm] =
1

P

P∑
p=1

gl,p[n, θd]g
H
l,p[n, θd], (2.23)

where ğ denotes the predicted CIR data, g denotes observed CIR data, P is the number of

observations, the subscript l is the hydrophone number, H denotes conjugate transpose, θd is

the d-th physical parameter in the CIR estimate and θd,ψ is the d-th physical parameter of the

ψ-th CIR model-based replica generated in the search space. Using the maximum a posteriori

criterion, the best fitness candidate is computed by performing BMAP = maxψ∈ΨB(ψ), where

Ψ is the set of all CIR replica candidates generated in the search space.

2.7 The Environmental-based Passive Time-Reversal

In this section the Environmental-based Passive Time Reversal receiver with model-based

environmental focalization is presented. The conventional time-reversal receiver is modified

to include the environmental focalization algorithm presented in the last section that employs

a forward ray tracing model.
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Figure 2.6 shows the block diagram of the communication receiver based on the EPTR

processor. The figure shows the transmitted probe signal and the received pre-processed

Figure 2.6: Block diagram of a single-input-multiple-output coherent communication receiver al-
lowing for the implementation of either the standard pulse compressed Passive Time-Reversal or
the Environmental-based Passive Time Reversal processors (see text for detailed explanation of the
role of each block).

probe signals feeding the channel estimation processor (PC/RegL1) to yield the CIR estimate

for each channel (i.e., the observed CIR data). The pre-processing is relative to the Doppler

compensation by appropriate resampling to remove the main Doppler trend and/or frequency

clock drift impairments between transmitter and receivers. The Doppler analysis can be

done by observing the Doppler Spreading Function (DSF) and the Doppler Spectrum (DS).

In this context, the EPTR employs an algorithm to reject sensors in which the Doppler

compensation failed. This procedure to block outliers sensors based on DS is described in

Appendix C.

Also, the “a priori” physical parameters are given as input to the EPTR that then
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performs environmental focalization using the EF algorithm, whose output is given by few

“a posteriori” CIR replicas (configured in the present work to be ∼3 replicas). Such replicas

feed the Maximum Power Decisor, which is employed to test those replicas under the criterion

of maximize the PTR output power, aiming to optimize the Q-function (Eq. 2.15). The

maximum power parameters set ψmp is given by

ψmp = arg max
ψoutput

1

N

N−1∑
n=0

|
∑
l

ğl[n, θd,ψoutput ] ∗ y
†
l [−n] |2, (2.24)

where ∗ denotes convolution, † denotes conjugate and ψoutput denotes the set of parameters

obtained as output of the inversion. Thus, the EPTR output signal is

z[n] =
∑
l

ğl[n, θd,ψmp ] ∗ y
†
l [−n]. (2.25)

The maximum PTR power “a posteriori” CIR finally feeds the time-reversal filter of the

particular channel. After summing, the time-reversal output is generated and after phase

offset compensation the receiver performs the message recovery.
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Physical parameters sensitivity in
simulated underwater communications

Preview This chapter presents simulation results for physical parameter sensitivity tests in

order to understand the influence of such parameters in shallow water time-reversal commu-

nications and further in environmental focalization processing. Section 3.1 discusses aspects

of shallow water channels; Section 3.2 deals with the scenario for the parameters sensitivity

testing; Section 3.3 presents the geoacoustic parameters simulations; and Section 3.4 presents

the geometric parameters simulations for the sensitivity tests in a time-reversal receiver.

3.1 Shallow water acoustic propagation

Shallow water acoustic propagation is introduced in this section aiming to highlight the

main issues usually found in underwater communications that cause severe inter-symbol in-

terference. Namely, the multipath, that causes CIR time spreading, and the time-variability,

that causes CIR frequency spreading, are discussed. In addition, the bottom influence and

the underwater unbounded channel bandwidth are briefly analyzed, before beginning the

simulations in the following sections.

Consider an underwater source transmitting to a receiver in a scenario where the range

is much larger than water depth such that the transmitted signal strongly interacts with the

boundaries – the so-called waveguide effect or waveguide propagation. Figure 3.1 illustrates a

39
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simplified overview of the general behavior of propagation in an underwater waveguide. The

upward propagating rays are reflected on the free surface with inversion of phase; downward

propagating rays are reflected in the bottom in two regimes: (i) those with grazing angles

bellow the critical angle, defined as θc = arccos(cw/cb), where cw is the water sound speed

near the boundary and cb is the bottom sound speed; and (ii) those with grazing angles

above the critical angle [58]. In regime (i), the rays penetrate the seabed with high slope

and, at high frequencies, most of them vanish or are severely attenuated. In regime (ii),

the rays have specular reflection keeping high energy in the water column, thus producing

waveguide bound signal propagation.

Figure 3.1: Simplified overview of the acoustic propagation regimes in shallow water forming a
waveguide channel after the critical angle and the acoustic propagation physical parameters that
affect the waveguide propagation. The envelope of an hypothetic channel impulse response is shown
at right.

The physical processes in range-independent acoustic propagation are influenced by a

set of physical parameters, which can be in general classified by a sound speed profile and

two groups of parameters, namely the geometric parameters and the geoacoustic parameters.
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The geometric parameters are: source depth, receiver depth, source-receiver range and water

depth (that is a single value in the case of a range-independent transect or a set of values

defined by the bathymetry in the case of a range-dependent transect). The geoacoustic

parameters are: bottom density, compressional speed and compressional attenuation, if the

seabed is assumed as a fluid layer, and additionally shear speed and shear attenuation, if

the seabed is assumed as a viscoelastic layer. The seabed model can also assume a layered

bottom, being usual to consider a fluid sediment layer with a particular thickness (e.g.,

from a few meters to a few tens of meters) over a viscoelastic bottom infinite half-space.

All the above physical parameters affect, in some particular degree, the channel impulse

response (CIR), which can be defined as the output signal that results of the Linear Time-

Invariant (LTI) system formed by source, underwater channel and receiver when an impulse

is applied as input signal. The CIR is the Green’s function solution of the wave equation

and allow us to predict what the system’s output would look like in the time domain by

employing the convolution theorem for LTI systems. Furthermore, the accurate knowledge

of the CIR is essential for channel compensation in underwater communication systems. In

particular, PTR receivers are directly dependent of accurate CIR estimation or modelling.

The most important aspect in shallow water acoustic propagation is the formation of a

waveguide channel. This means that propagation of the transmitted signal follows multiple

paths, being some paths direct between source-receiver and other paths reflected in the

boundaries, which can be modelled as the eigenrays of the ray tracing solution, which

interfere with each other forming a complex acoustic field. The direct consequence is the

CIR being characterized by a set of delayed arrivals each with a particular amplitude.

Therefore the received signals are severely affected, specially if their duration is longer than
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the time delay between two consecutive CIR arrivals. Others issues on acoustic propagation

are the Doppler effect mainly caused by source-array motion or (unavoidable) sea surface

motion, the bottom loss, the bathymetry effects and the bandwidth limitation mainly due to

frequency-dependent attenuation. Figure 3.2 shows an overview of a shallow water modeled

scenario of multipath propagation, showing the eigenrays connecting one source to multiple

receivers, as it may happen in a unidirectional Single-Input-Multiple-Output (uni-SIMO)

type of communication. The eigenrays’ structure, i.e., a series of ray paths connecting the

source and the receivers are shown in magenta. Also, a few text boxes are shown in the figure

to indicate the main issues that affect shallow water propagation. The wavefronts arriving at

the vertical array of hydrophones are shown on the right, in a representation of hydrophone

depths in the vertical axis versus delays in horizontal axis. Note the wavefronts of the several

delayed peak arrivals as consequence of the multipath propagation. The next subsections

presents a short description of the ray model and discusses the main issues affecting shallow

water propagation (shown in the gray boxes of Fig. 3.2).

3.1.1 Waveguide multipath propagation

Shallow water waveguide channels are prone to multipath propagation due to multiple re-

flections in the upper free surface and the seabed. A pattern of multiple interferences occurs

with the propagating rays, which can be modeled by one of the several options of physical

models available in specialized websites (e.g., [59, 60]), each one using a particular method

to solve the wave equation, having particular accuracy and complexity.

Despite of the several model options, in underwater communications the ray tracing

method is appropriate due to the use of high frequency asymptotes and the suitability to
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Figure 3.2: Main issues that affect the propagation in underwater acoustic waveguide channels.
The scenario and its multipath structure (paths in magenta) are shown on the left. The wavefronts
are shown on the right (color-plot in blue), showing the hydrophones depth in the vertical axis and
time-delayed path arrivals in horizontal axis.

broadband signals. The channel model use physical parameters of the environment (e.g.,

water sound speed profile, bottom sound speed, density and attenuation) and geometric

parameters related to the sensors location (e.g., source depth, receiver depth and source-

receiver range) for computing the acoustic field. It can be used to compute path amplitudes

and arrival times for simulating time-invariant snapshots of channel impulse response repli-

cas. Also, using a set of sequential snapshots, one may obtain a two-dimensional time-variant

channel impulse response, with the time window of impulse response in the horizontal axis

and the evolution in time of the sequential CIR snapshots in the vertical axis.

Next we briefly describe (i) the ray tracing numerical solution of the wave equation that

can be used to compute a time-invariant CIR snapshot in a particular instant and (ii) the

time-variant CIR obtained from several sequential snapshots.
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Ray tracing numerical solution of the wave equation

The ray trace model is appropriate for underwater acoustic communications systems, e.g.,

employing frequencies in the band 10 kHz to 30 kHz, due to the high-frequency approximation

inherent to its design [61]. This fact justifies the choice of the ray model to be used in this

work as the forward model for environmental focalization. Furthermore, as described in [58],

ray methods are used extensively for operational tasks where computation speed is a critical

factor and environmental uncertainty poses severe constraints on the attainable accuracy.

The ray solution in an unbounded underwater media for a source located at ~r0 = (r0, z0)

transmitting to a receiver at position ~r = (r, z), assuming two-dimensional Cartesian co-

ordinates, can be obtained from the frequency domain version of the wave equation – the

Helmholtz equation – as follows

[
∇2 + ω2/c(~r)2

]
ψ(~r, ω) = −δ(~r − ~r0), (3.1)

where the angular frequency is ω and ψ is the potential displacement, whose relation to

acoustic pressure p(~r, t) in time domain and mean water density ρ is p(~r, t) = −ρ ∂
∂t
ψ(ω, t).

Assuming plane wave approximation, it can be stated the ray series solution as follows

p(~r, ω) = e−iωτ(~r)

∞∑
j=0

Aj(~r)

(iω)j
(3.2)

with τ(~r) representing travel time and A(~r) representing envelope amplitude.

The travel times and complex amplitudes of the ray series are well-known in the literature,

being solved by the Eikonal and Transport equations. The ray trace theory and numerical

model is described in details in [58]. The inputs to the model are the physical parameters

describing the channel, i.e., the location and frequency regime of the source, the receivers

location, the water sound speed profile and the geoacoustic parameters of the bottom (sound
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speed, attenuation and density). Also, the model parameters “step”, used to compute

successive parts of the ray trajectories, and the “ray launching angles” must be given as

initial condition for the model. The eigenrays, i.e., the ray paths that connect the source

and the specified receiver positions, are searched over a high number of rays computed by

setting a large amount of ray launching angles. As described in [58], mathematically this is a

root-finding problem, for which some solution methods are proposed, as, e.g., interpolation

and bending method, among others. Thus, the ray trace model output can be given by a

set of travel times and complex amplitudes, each one corresponding to a path arrival of the

linear time-invariant CIR.

Time-variant channel impulse response

Time-variability in underwater acoustic channels may be caused by unavoidable movement

of the sea surface or by movement of source and receiver sensors. One may want to check

if the channel variability along a transmission is too large, aiming to choose an appropriate

equalization strategy. For instance, in the case of the PTR described in Chap. 2, the basic

assumption is that the channel may be considered reasonably stable, since the method can

not track channel variability. Thus, the time along which the PTR CIR estimate obtained

from a single probe signal is valid will depend on the degree of channel variability along the

transmission time. In other words, the channel coherence time, i.e., the time duration over

which the CIR is considered to be stable must be as large as possible.

The time-variability of the channel can be checked with using a two-dimensional (2D)

CIR representation, which may be generated through the usage of a sequence of probe signals

along the transmission time, aiming at computing a sequence of time-invariant snapshot CIR

estimates that, in a discrete version, are organized as a matrix, where the horizontal axis
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denotes the reduced time dimension at which path arrival delays are observed and the vertical

axis denotes the snapshot time dimension at which the sequence of snapshots are observed.

Figure 3.3 shows an example of 2D CIR representation, obtained from real data of the

UAN11 sea trial in May 24, 2011 (described in details later in Chapter 4), where a sequence

of 20 probe transmissions with 2 kHz bandwidth centered at carrier frequency 26.5 kHz is

used to estimate the channel in a 890 m range shallow water range-dependent transect with

water depth between 30 and 100 m, for a source at 28 m and a hydrophone at 34 m. A 16

ms time window is used for each snapshot CIR and the time duration of the whole sequence

of snapshots is 20 s.

Figure 3.3: CIR in 2D representation, obtained from real data of the UAN11 sea trial in May 24,
2011, showing 20 snapshots of time-invariant CIR estimated with the classical method of pulse
compression, each one with a 16 milliseconds duration. Multipath propagation effects are observed
as the delayed arrivals along the horizontal time axis.

The 2D CIR estimate presents a strong arrival path at 3 ms, that is nearly stable along

the 20 s duration of the sequence of snapshots (in fact, one may note a very slight trend in

the travel time of this path along the transmission), followed by a smaller amplitude arrival

path at 4 ms, with significant fading along the transmission, and a vanishing delayed arrival

path at approximately 12 ms.
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3.1.2 Doppler effect distortion

The movement of surface waves and transducers cause time-variability in an underwater

channel, which in turn causes a Doppler effect due to the low speed of sound in water. In

underwater communications the Doppler effect can be severe because even small movements

are Doppler relevant due to the signal frequency and low wavelength. The receiver must

compensate for the Doppler distortion before demodulation, being an usual procedure to

employ resampling techniques.

Surface waves motion is mainly driven by the wind strength and causes Doppler effect due

to the reflection of rays in moving scatter points. The main consequences are fading, random

oscillating Doppler distortion and scattering loss. Surface displacement can be assumed to

be a random process and, e.g., the Pierson-Moskowitz wavenumber spectrum can be used

to compute events of statistical representation of the sea surface [62]. At low frequencies

the sea surface may be regarded as smooth, with total reflection of intensity at the specular

angle [63]. However, at frequencies greater than approximately 2 kHz, this is no longer the

case and the reduction of energy intensity must be taken into account for the sound scattered

from the surface at non-specular angles. A model for both periodic-like and stochastic sea

surfaces at short ranges is proposed in [64], considering a real shallow water range dependent

waveguide.

Transducers motion often causes significant Doppler effect. Even in the case where the

sensors are moored, small horizontal oscillations still occur and are relevant in underwater

communications due to the use, in general, of high frequency signals (>8 kHz). In the case

of existing intentional source-receiver movement, as e.g. when operating an autonomous
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underwater vehicle, severe Doppler effects occur.

In shallow water waveguides, in presence of time-varying multipath propagation, each

path is affected by a Doppler effect with a particular time compression or dilation factor,

yielding frequency shift and spectrum distortion [65]. A simplified time-variant multipath

with a single boundaries’ reflection may be represented by the bi-scattering geometry model,

which determines for a direct path between source and receiver and for a path reflected in a

scatter point, the corresponding Doppler compression (or dilation) factor. The bi-scattering

geometry model is briefly described in Appendix D.

For the analysis of the Doppler effect in underwater channels, one may want to use the

Doppler Spreading Function (DSF) [66]. The DSF is obtained from the 2D CIR representa-

tion applying a Fourier transform over the snapshot time axis, thus yielding a frequency axis

that allows to determine frequency shifts or spectrum distortion. In a discrete version, the

DSF is a matrix where the horizontal axis denotes the reduced time dimension at which path

arrival delays are observed and the vertical axis denotes the Doppler frequency. To obtain

the discrete DSF, one may assume a 2D CIR g[n, k], where n denotes time along snapshots

and k denotes the delay time (see the example shown in Fig.3.3), and apply the discrete

Fourier transform with respect to n, yielding the DSF S[φ, k], where φ denotes Doppler

frequency, as follows

S[φ, k] =
N−1∑
n=0

g[n, k]e−j(2πφn)/N (3.3)

Figure 3.4 shows an example of a DSF computed from a time-variant CIR estimate of 20

s duration containing 20 CIR snapshots of 16 ms, of Fig. 3.3. The environment is the same

as that described in the previous section for the case of the 2D CIR.
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Figure 3.4: Example of DSF computed from the time-variant CIR, generated with 20 snapshot CIR
of 16 ms, of Fig. 3.3.

The example in this figure presents a DSF with a strong arrival path at 3 ms, which has

low Doppler shift, followed by an arrival path at 4 ms with significant Doppler shifts of +-0.3

Hz and a vanishing delayed arrival path at 12 ms with Doppler shift at 0.1 Hz and -0.3 Hz.

3.1.3 Bottom influence

The simplest seabed model is a range independent water column over an infinite half-space

fluid bottom, which seldom represents realistic scenarios. A more elaborated seabed model

may be obtained assuming a variable range-dependent bathymetry over a layered seabed

where there are, e.g., a fluid sediment layer over a viscoelastic half-space.

The bottom influence on waveguide acoustic propagation can be modeled in terms of

reflection coefficients in the water-bottom interface. This procedure is particularly useful to

represent a layered bottom and can be employed in the Bellhop ray trace acoustic propaga-

tion model [46], using a reflection coefficient table as input. Such table can be previously

computed with the Bounce model [47]. The joint usage of these two models is used in this

work to simulate a layered seabed assumed as a sediment layer over a bottom half-space.

In the case of a fluid sediment layer over a viscoelastic bottom half-space seabed, the
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reflection coefficients can be calculated as a function of the acoustic impedance in water

(Zp,1), the acoustic impedance in fluid sediment layer (Zp,2) with thickness h2, the viscoelastic

bottom compressional/shear impedances (Zp,3 and Zs,3), the corresponding incidence angles

(θp,i, i = 1, 2, 3 and θs,3, relative to horizontal), the angle-dependent vertical phase delay

for a path crossing the sediment layer φ2 and the Rayleigh roughness parameter Γ due to a

random rough surface. As described in detail in [58], the reflection coefficient for such three

layer model (i.e., water column, fluid sediment layer, viscoelastic bottom half-space) is given

by

R =
Zp,2(Ztot,3 − Zp,1 − i(Z2

p,2 − Zp,1Ztot,3) tanφ2

Zp,2(Ztot,3 + Zp,1 − i(Z2
p,2 + Zp,1Ztot,3) tanφ2

e−0.5Γ 2

, (3.4)

where the total acoustic impedance in the viscoelastic layer is

Ztot,3 = Zp,3 cos2(2θs,3) + Zs,3 sin2(2θs,3), (3.5)

the compressional and shear acoustic impedances are given respectively by

Zp,i = ρicp,i/ sin θp,i, i = 1, 2, 3; Zs,i = ρics,i/ sin θs,i, i = 3, (3.6)

the angle-dependent vertical phase delay for a path crossing the sediment layer is

φ2 ≈ 2π
h2

cp,2
fsinθp,2, (3.7)

and the reflection angles calculated with the Snell’s law are given by

θp,i = arccos

(
cp,i
cp,i−1

cos θp,i−1

)
, i = 2, 3; θs,2 = arccos

(
cs,2
cp,i−1

cos θp,i−1

)
, i = 3. (3.8)

The density is denoted by ρ and compressional and shear sound speed are cp and cs, respec-

tively, f denotes frequency and h2 denotes the sediment layer thickness.

Also, a critical angle occurs when the cosine of the incidence angles cos θp,1 become
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negative and cp,2 > cp,1. This critical angle is computed by

θp,i = arccos

(
cp,2
cp,1

)
. (3.9)

The bottom loss is given by BL = −10 log |R|2. It is useful for the physical analysis

of communication channels to verify the bottom loss behavior in medium-high frequency

regime (greater than ∼8 kHz) and compare it to the low frequency regime (up to 2 kHz)

usual in classical acoustic propagation problems.

Figure 3.5 shows the bottom loss calculated from the reflection coefficients computed by

the Bounce model for the low-frequency band, from 0.5 kHz to 2 kHz (a and c), and for the

high-frequency band, from 2 kHz to 30 kHz (b and d). It was assumed a sediment layer of

2 m thickness to generate the sub-figures in the top row (a and b) and a sediment layer of

5 m thickness for the sub-figures in the bottom row (c and d). The geoacoustic parameters

used in this simulation are shown in Table 3.1.

Table 3.1: Geoacoustic parameters used to compute the bottom loss of Fig. 3.5.

Geoacoustic parameters
Layer Sound speed (m/s) Attenuation (dB/λ) Density (g/cm3)

Water 1484 (98m depth) 0.0 1.0
Sediments layer 1550 0.2 1.5
Bottom half-space 1800 0.5 2.0

These figures show two distinct behaviors of the bottom reflection loss in terms of grazing

angle: a region before the critical angle (which is identified in the figure by the abrupt change

in bottom loss value) and a region after the critical angle. The former region represents the

far field where the bottom reflection is high (low bottom loss), being identified as the red

region in the figures. The latter region represents the near field where the bottom reflection

is low, identified as the blue region.
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(a) (b)

(c) (d)

Figure 3.5: Bottom reflection loss calculated with parameters of Table 3.1 for a low-frequency
regime (a and c) and a high-frequency regime (b and d). Sediment layer with 2 m thickness (a and
b) and 5 m thickness (c and d).

In the results with the low-frequency band showed in Fig. 3.5 (a) and (c), the critical

angle occurred in the interval between 19 and 38 degrees and there is an oscillating behavior

of bottom loss in the near field. For the test using the high-frequency band (>8kHz) showed

in Fig. 3.5 (b) and (d), the critical angle occurred at ∼19 degrees and the bottom loss has

a flat behavior both for the far and for the near field. The oscillations in the near field

found in the low-frequency band can be explained by the component tan φ2 in (3.7), where

the angle-dependent vertical phase delay φ2 for a path crossing the sediment layer is directly

proportional to the frequency, to the sediment layer thickness and to a sinusoid driven by the

incident angle due to the component sinθp,2 in (3.7). Thus, large values of layer thickness
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and/or frequency take tan φ2 to a nearly constant region of the tangent function, which

makes the oscillation of the dumped sinusoid in (3.7). These figures indicate that at very

short range (i.e., in the near field where the grazing angles relative to horizontal are greater

than the critical angle) the energy is severely attenuated without oscillations in magnitude

for frequencies greater than 8 kHz exactly those usually employed in underwater acoustic

communications.

3.1.4 Bandwidth limitation in unbounded acoustic propagation

In the ocean the attenuation of acoustic waves is frequency-dependent and approximately

proportional to the square of the signal frequency [11]. Frequency selective attenuation limits

the channel bandwidth, which makes the maximum data rate to be limited as well since the

pulse bandwidth must be designed to have smaller bandwidth than the channel.

The limited channel bandwidth requires the choice of an appropriate carrier frequency

and pulse interval. A short pulse interval is chosen to increase data rate but must satisfy

the channel bandwidth limitation. In addition, note that the smaller the pulse time interval

chosen for a communications system increased data rate, the better the system’s ability to

avoid loss of coherence due to channel variability. The implications that time variability

in multipath channel bears on the high-speed communication system design are twofold, as

Stojanovic describes [67]: signaling at a high rate causes many adjacent symbols to interfere

at the receiver, requiring sophisticated processing to compensate for the ISI; nonetheless,

as pulse interval becomes shorter, channel variation over a single symbol interval becomes

slower. Therefore, there is a compromise between ISI distortion and channel coherence,

that one should be concerned with, when designing the system data rate. Low data rate
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(large pulse interval) decreases distortion due to ISI but increase distortion due to channel

variation (channel tends to have less coherence); and high data rate decreases distortion due

to channel variation but increase distortion due to ISI.

Carrier frequency and pulse bandwidth should be designed accordingly to the require-

ments imposed by the underwater channel1. Depending on frequency and range, the expected

losses for unbounded propagation caused by volume attenuation (composed by volume scat-

tering and absorption), volume spreading and ambient noise can be computed, giving an

approximation of suitable regions to set the carrier frequency and pulse bandwidth.

Volume attenuation can be computed by an expression for the frequency dependence of

the attenuation, as follows [58]

α = 3.3× 10−3 + (0.11f 2)/(1 + f 2) + (44f 2)/(4100 + f 2) + 3× 10−4f 2 (3.10)

with frequency f in kHz and attenuation factor α in dB/km. The volume spreading of

a point source transmitting in an unbounded media is given by spherical spreading, i.e.,

with losses proportional to the inverse of the square range. Ambient ocean acoustic noise

can be man-made shipping noise, usually near harbors, or natural, caused by wind, waves,

earthquakes or biological. A well-known summary of the spectrum of noise was compiled

by Wenz [68, 58] indicating that noise have weaker sound pressure level at high-frequency

due to ocean acoustic propagation and that the most influent component is wind noise,

which is usually parameterized according to wind force. Figure 3.6 shows a simulation of

the Transmission Loss (TL) in a unbounded media as function of range in km and frequency

in kHz, using as input the inverse product of volume attenuation of (3.10), spherical volume

1In fact, there are also other practical requirements as, e.g., transducer characteristics, size, power
consumption, but they are out of the scope of this analysis.
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spreading and ambient noise (spectrum of Wenz). Thus, in dB scale the curves are given by

TL = −(α+ 20logR +NL), where α is the volume attenuation in given by (3.10) in dB, R

denotes range in m and NL is the sound pressure level of ambient noise in dB given by the

Wenz’s table [58].

Figure 3.6: TL (dB) for unbounded media propagation as function of frequency and parametrized
by source-receiver range.

For this particular case, of unbounded propagation, the most appropriate region in terms

of reduced loss are indicated for each curve with a dashed line that denotes −3 dB decay,

i.e., half energy in linear scale. Therefore, assuming e.g. a source receiver range of 1 km in

unbounded media, an appropriate carrier frequency could be some value between 10 and 40

kHz.

Note that the above computation is for an unbounded media instead of a shallow water

waveguide. In shallow water multiple paths interaction causes a complicated pattern of
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interferences, and the TL must be determined by a physical acoustic propagation model.

3.2 Scenario for parameter sensitivity testing

This section presents the scenario that is employed for all the simulation tests, considering

that in the next sections simulations for sensitivity to geoacoustic and geometric parameters

are performed aiming to reach physical knowledge useful for the environmental focalization

in the EPTR.

A QPSK unidirecional-Single-Input-Multiple-Output (uni-SIMO) link with carrier

frequency 12 kHz is simulated for a waveguide scenario with water depth 84 m range-

independent transect, where a source at 40 m depth transmits to a 14 hydrophones vertical

array positioned at 3 km range. Figure 3.7 shows the scenario with the channel physical

parameters and the communications parameters. Figure 3.8 shows the sound speed profile

for the simulated scenario, that is based on a real CTD profile.

Figure 3.7: Simulation scenario with the channel physical parameters and the system setup param-
eters.

Each geometric and geoacoustic parameter varies separately for a series of model runs,
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Figure 3.8: Sound speed profile relative to the scenario for parameter sensitivity testing.

in a procedure that aims to represent the influence of each parameter on the high-frequency

acoustic field. The received signals constellation after being processed with a standard time-

reversal receiver are also generated along the tests to observe the corresponding effects.

The approach for the parameters’ sensitivity testing is to use a physical model to simulate

the actual CIR assuming a set of parameters and to simulate several estimated CIR computed

by assuming several mismatch values of a particular parameter that is being tested. These

CIR estimates are used in the time-reversal filtering.

The standard PTR processing is performed and its output is, after appropriate down-

sampling and demodulation, presented in a constellation diagram of the demodulated sym-

bols to check the effects caused by the physical parameter mismatch. The CIR representing

the actual channel is modeled according to the scenario of Fig. 3.7.

The parameters’ sensitivity tests are performed for communication channels simulated

with the Bellhop ray tracing model [46], which is used to compute amplitudes and delays

of arrival paths of the time-invariant CIR. A fluid sediment layer is included in the bottom
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model, as shown in Fig. 3.7, aiming at obtaining a more realistic scenario. To include the

layered bottom, a set of equivalent reflection coefficients are computed with the Bounce

model [47] and then the generated coefficients table is then used as input to the Bellhop

model. The constellations are generated as output of a standard time-reversal receiver.

3.3 PTR sensitivity to geoacoustic parameters

The geoacoustic parameter simulations in high frequency propagation is divided in two

stages. In the first stage, each geoacoustic parameter of the sediment layer is separately

varied to observe the effects over the channel as well as the effects in the time reversal output

due to using the mismatch CIR replicas as the CIR estimates that feed the time-reversal

filters. In the second stage, typical seabed with realistic geoacoustic parameter combination

are used to simulate the CIR, and thus the effects in the time-reversal receiver are checked

in the same manner done in the first stage of the testing.

From a physical viewpoint the distortion of a particular seabed parameter without chang-

ing the others parameters is non-realistic, since, in some cases, there is correlation between

bottom parameters, so one can not vary independently from the others. However, this pro-

cedure is still useful to indicate on how each physical parameter affects the acoustic field and

thus the coherent signal demodulation. For inversion and focalization, the understanding of

the influence of each parameter may help to generate an appropriate setting of the “a priori”

parameter search space for optimization.

3.3.1 Sensitivity to the compressional speed in the sediment layer

The compressional sound speed (cp) in the sediment layer is tested for a range of values

published by Hamilton in [45], which is summarized in Table 3.2 for a series of typical
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bottom types.

Table 3.2: Geoacoustic properties of continental shelf and slope environments [45].

Bottom type ρ (g/cm3) cp (m/s) αp (dB/λ)

Clay 1.5 1500 0.2
Silt 1.7 1575 1.0
Sand 1.9 1650 0.8
Gravel 2.0 1800 0.6
Moraine 2.1 1950 0.4
Chalk 2.2 2400 0.2
Limestone 2.4 3000 0.1
Basalt 2.7 5250 0.1

Table 3.3 shows the range tested for the compressional speed in the sediment layer from

1570 to 3030 m/s, equally spaced at ∆c = 20 m/s.

Table 3.3: Sediment compressional sound speed for the sensitivity simulated test.

Parameter Lower limit Upper limit Step

cp (m/s) 1570 3030 20

Figure 3.9 shows the reflection coefficient for a low value 1570 m/s and a high value 2140

m/s of sediment sound speed in (a) and (b), respectively, with magnitude (blue) and phase

(green). The figure clearly indicates that the compressional speed in the sediment is directly

related with critical angle and magnitude of the reflection coefficient. The phase angles

increase before the critical angle in both cases (a) and (b), and practically don’t change after

it. The critical angle is identified in (a) and (b) by an abrupt change in magnitude and phase

(like a threshold effect) as the grazing angle increases.

Figure 3.10 shows the simulated CIR for a low value 1690 m/s (a), a medium value 1990

m/s (b) and a large value 2770 m/s (c). It clearly indicates that CIR time spread increases

with sediment sound speed. This behavior causes changing in the position of the path delays
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(a) (b)

Figure 3.9: Sediment sound speed effects. The reflection coefficient for a low value (a) and a high
value (b) of sound speed in the sediment layer.

(a) (b) (c)

Figure 3.10: Simulated channel impulse responses for a low value 1690 m/s (a), a mean value 1990
m/s (b) and a high value 2770 m/s (c) of sediment sound speed.

along the time axis.

Figure 3.11 shows a brief representation of the most significant trends observed in the

sensitivity test for compressional sound speed in the sediment, in terms of reflection co-

efficient, CIR snapshot and constellation diagram. This figure indicates that when the

sediment compressional speed increases the following effects occur: (i) the critical angle

increases, as expected, given that it depends of the sediments sound speed through the re-

lation θc = arccos(cwater/csed); (ii) the magnitude of the reflection coefficient increases, due

to the higher sediment compressional speed relative to the water sound speed, making the

corresponding impedance (given by Zsed = ρsedcsed) to be higher than in the water; (iii)



3.3. PTR sensitivity to geoacoustic parameters 61

Figure 3.11: Variation of compressional sound speed in sediment layer (5m) over bottom half space
(case of cp1 = 1990 m/s shown).

the reflection coefficient phase increases in the far field (i.e., before the θc); (iv) the time

duration of the CIR increases due to the higher level of reflection (explained in ii); and

(v) the received constellations, after being processed by a standard time-reversal tend to

rotate counterclockwise expanding slightly the symbol clusters. The clusters rotation and

expansion may be explained by the fact that when we vary cp to higher values, the physical

model generates a bottom more reflective, where the CIR spreads and thus path distortions

occur in amplitude and delay shift. Consequently, these distortions in the CIR estimates

used for PTR filtering cause mismatches with the actual CIR in the PTR Q-function (given

by the cross-correlation between the CIR estimate and the actual CIR, summed over all the

channels) that yields phase shift and amplitude changes in the PTR output demodulated

symbols. Such distortions of amplitude and delay shift are observed as cluster expansion

and rotation in the QPSK constellation diagram.

To shortly illustrate the mismatches expected in the Q-function due to the path delayed

CIR caused by variations in cp, Fig. 3.12 shows on the left column the hypothetic actual



62 Chapter 3. Physical parameters sensitivity in simulated underwater communications

CIR 1 and its tap-delayed versions CIR 2 and CIR 3, representing effects of varying cp; and

on the right column the auto-correlation of CIR1 (in reference to an ideal Q-function with

no mismatch between CIR estimate and the actual CIR) and the cross-correlation of CIR1

with CIR2 and of CIR 1 with CIR3. These cross-correlations clearly indicates that there

Figure 3.12: On the left column are shown an hypothetic CIR, named “CIR 1” and its tap delayed
versions “CIR 2” and “CIR3”. On the right column are the auto-correlation of “CIR 1” and its
cross-correlation with the tap delayed “CIR 2” and “CIR 3”. The CIR mismatch caused by delayed
taps generates a cross-correlation with delayed side lobes, suggesting that some delayed residual
side lobe may eventually occurs in the Q-function of PTR. Delayed side lobe in the Q-function
would cause phase rotation in the PTR output.

is a path shift caused by the mismatches of CIR 2 and CIR 3 relative to CIR1, suggesting

that the PTR Q-function will have a delay shift that causes phase shift in the PTR output

demodulated symbols.

Therefore, the sediment compressional sound speed variation causes significant changes

in the CIR in terms of delays of arrival paths, which is a remarkable feature for PTR. The

accuracy with which such delays are modeled is an important issue in channel estimation



3.3. PTR sensitivity to geoacoustic parameters 63

for PTR communications affecting directly channel compensation performance. In a model-

based channel compensation processor, the importance of that parameter among the other

sediment parameters is high. In environmental focalization, this feature can be explored to

“a priori” select an appropriate set of CIR candidate replicas as input to the focalization

processor through the increase of the resolution of this parameter, i.e., giving a dense number

of values of the parameter as input, in comparison to the others prior physical parameters.

3.3.2 Sensitivity to the density

Following, sediment density (ρ) testing performed for a range of realistic values is shown in

Table 3.4 , based on those of Table 3.2.

Table 3.4: Sediment density variation range for the sensitivity simulated test.

Parameter Lower limit Upper limit Step

ρ (g/cm3) 1.70 2.65 0.05

Figure 3.13 shows the reflection coefficients for the minimum 1.70 g/cm3 and maximum

2.65 g/cm3 values of the sediment density in (a) and (b), respectively, where it can be

observed that the magnitude increases after the critical angle, the phase slightly decreases

before the critical angle and otherwise remains approximately unchanged. Also, the critical

angle is constant at approximately 20 degrees.

Fig. 3.14 shows the significant trends observed in the present results for variation of

density in sediment. The results obtained for the physical model in this test indicate that

when the sediment density increases: (i) the critical angle do not change, as expected,

because it is a function of cp, as shown in (3.9), and thus independent of ρ; (ii) the magnitude

of the reflection coefficients increases, which can be explained by the acoustic impedance (Z)
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(a) (b)

Figure 3.13: Reflection coefficient versus grazing angle for the minimum 1.70 g/cm3 (a) and
maximum 2.65 g/cm3 (b) values in the range for the sediment density parameter.

Figure 3.14: Density in sediment layer (5m) over bottom half space testing.

being directly proportional to the density (Z = ρcp) and thus the reflectivity increases when

the density increases; (iii) the reflection coefficient phases do not change in the near field,

which is an effect less obvious than that the reflection coefficient magnitude, being obtained

as a solution of (3.4) ; (iv) the CIR time spreading does not change significantly (not shown);

and (v) the received PTR compensated constellation rotates clockwise and expands slightly.

The reason for ρ to cause slight constellation rotation may be due to slight effects of delay

shift in the CIR paths, in a process with the same nature than for the compressional speed
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cp but in small scale, since both cp and ρ are directly proportional to Z, which affects the

bottom reflectivity.

The varying of density in sediment layer is less important to the environmental focaliza-

tion than the compressional speed since the CIR mostly changes path magnitude and have

small effect on the path delays. Nonetheless, even the small effect on the path delays may be

the probable cause of the slight constellation rotation which indicates that, although small,

an influence still occurs in the acoustic field and it should be considered in the choice of

search space for environmental focalization.

3.3.3 Sensitivity to the compressional attenuation

Table 3.5 shows the range of variation of compressional attenuation (αp) used for this

simulation sensitivity test.

Table 3.5: Compressional attenuation variation range for the sensitivity simulated test.

Parameter Lower limit Upper limit Step

αp (dB/λ) 0.10 1.05 0.05

Figure 3.15 shows the reflection coefficients for the minimum 0.10 dB/λ and maximum

1.05 dB/λ values of the compressional attenuation parameter in (a) and (b), respectively.

One can observe that the magnitude decreases decreases for angles smaller than the critical

angle and otherwise the magnitude and phase remains approximately unchanged, as well as

the critical angle.

Figure 3.16 shows the significant trends observed in the present results for variation of

attenuation in sediment. The results for the compressional attenuation of the physical model

indicate that when it increases: (i) the critical angle does not change, as expected, due to
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(a) (b)

Figure 3.15: Reflection coefficients versus grazing angle for the minimum 0.10 dB/λ (a) and
maximum 1.05 dB/λ (b) values in the range for the compressional attenuation parameter.

Figure 3.16: Compressional attenuation in sediment layer (5m) over bottom half space testing.

the same reason explained for ρ, i.e., the critical angle is independent of αp as shown in

(3.9); (ii) the reflection coefficients magnitudes decrease for grazing angles smaller than the

critical angle because the high reflectivity in this far field is decreased by the increasing of

attenuation; (iii) the reflection coefficient phase do not change significantly; (iv) the CIR

time spreading does not change significantly, only the path amplitudes (not shown); and

(iii) the received PTR compensated constellation does not rotate because path delay shifts

are negligible.
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The variation of compressional attenuation in sediment layer have a low impact in the

environmental focalization since the constellation do not change for all the range of com-

pressional attenuation tested. This fact suggests that the selection of a search space for

environmental focalization may consider the compressional attenuation parameter with a

low resolution, or even may assume it negligible to the time-reversal communications sys-

tem, which implies to exclude it from the search space of environmental focalization, thus

saving computational cost without significant loss of communications performance.

3.3.4 Summary of individual parameter variability effects

Beyond the sediment layer parameters, the half-space bottom parameters were also tested

(not shown), but the results indicate that the effects on the time-reversal receiver output

bellow a 5m sediment layer are negligible. This can be explained by the fact that high atten-

uation occurs in the seabed for high frequency signals and there is no significant interaction

with the region deeper than the sediment layer.

Table 3.6 summarizes the effect of a 5 m thickness clay sediment layer over medium

sand bottom half-space. The geoacoustic parameters are on the left, where cp denotes

compressional sound speed, ρ denotes density, αp denotes compressional attenuation, the

under-script 1 denotes sediment layer and the under-script 2 denotes bottom half-space.

The legend on the right shows the trend or general behavior of the reflection coefficient, the

received constellation after being processed by the standard PTR and the critical angle.

These results indicate that, from an environmental focalization viewpoint, the relevance

of the parameters for a time-reversal underwater acoustic communications system with

the underwater scenario of the present test are classified in ascending order as follows:
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Table 3.6: Test for thin sediment layer over half space bottom parameters.

compressional sound speed in sediment, density in sediment, compressional attenuation in

sediment, compressional sound speed in bottom-half-space (if the thickness is < 2 m). The

influence of density and compressional attenuation bottom-half-space are negligible.

Compressional speed is the more important geoacoustic parameter for the EPTR because

its variation influences the CIR arrival path delay, which is an important feature to be set

on the replica candidates of the environmental focalizer search space. This feature makes

the search space generate CIR candidates with slight shifts of delay paths, which helps the

processor to scan path delays positions in order to seek a better match between a CIR

candidate and the estimated CIR.

The density in the sediment causes some constellation rotation, but the effect is relatively

small, indicating a smaller degree of importance for the time-reversal system. Further, the

compressional attenuation causes negligible effects in the constellation, being thus the least

important of the geoacoustic parameters analyzed in the present simulation tests.
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3.3.5 Joint geoacoustic parameters mismatch test

Geoacoustic parameters are not independent in the sense that when one parameter varies in a

given direction the others vary accordingly. For instance, if the compressional speed increases

then, in general, the density also increases and the attenuation may decrease. The present

simulations aim at identifying the effect of creating a geoacoustic parameter mismatched

channel and applying a standard time-reversal system. The approach is to use a particular

type of bottom (sand) to be the “actual” channel and then use a channel replica generated

from other types of bottom to be the channel estimate for the time-reversal filters. The

objective is to observe the effects of a realistic bottom type variation over the constellation,

caused by a controlled mismatch. It is important to note that the idea is not to track a

new bottom along the transmission. The goal is to understand what are the consequences

of using a wrong model to build a channel replica equalizing the channel with time-reversal

technique.

Bottom types are chosen according to the parameters for typical materials found in

realistic seabed shown in Table 3.2, i.e., clay, silt, sand, gravel, moraine, chalk, limestone

and basalt. To illustrate the wide range of reflectivity conditions encountered for such

types of bottom, the reflection coefficients are computed. Figure 3.17 shows the reflection

coefficient versus grazing angle computed for all those bottom types. Figure 3.18 shows the

CIR corresponding to each type of bottom. Figure 3.19 shows the corresponding PTR output

constellations obtained after the received signal that crossed through a sand bottom modeled

channel be processed by PTR using CIR estimates modeled from each type of bottom in

Table 3.2. These figures serve to illustrate the wide range of general reflectivity conditions
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Figure 3.17: Reflection coefficient for bottom types: clay, silt, sand, gravel, moraine, chalk, lime-
stone and basalt, with properties set according to Table 3.2.
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Figure 3.18: CIR generated assuming reflection coefficients of Fig. 3.17 for the scenario described
in Sec. 3.2 and for bottom types: clay, silt, sand, gravel, moraine, chalk, limestone and basalt, with
properties set according to Table 3.2.
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Figure 3.19: Receiver constellations computed in a noiseless channel assuming the mismatch be-
tween the reference “actual” CIR from sand bottom and each CIR “estimate” of Fig. 3.18 from
the reflection coefficients of Fig. 3.17 for bottom types: clay, silt, sand, gravel, moraine, chalk,
limestone and basalt, with properties set according to Table 3.2.
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encountered for realistic bottoms. In the reflection coefficients figure, the low-angle reflection

coefficients have small variation for bottoms with high reflectivity such as basalt, gravel and

sand. For bottoms with poor reflectivity such as clay and chalk, the low-angle reflection

coefficients show a severe decay.

In the CIR figures, the effects of the geoacoustic parameters variability in group over

the amplitudes, delays of arrival paths and CIR time spread are presented, indicating quite

different behavior in terms of CIR shape and time spreading for each type of bottom. In

general, harder bottoms, i.e., those with high density and compressional speed, tend to have

a CIR with large time spread, which is explained by the increase in reflectivity. Such general

behavior is observed in the CIR figures shown for all bottom types, except for chalk and

limestone, which have the particular behavior of generating two short time-spread groups of

path arrivals separated by a long time interval without paths. The reason for separation of

path arrivals in two time-spread groups may be explained as being a consequence of the two

separated high magnitude peaks of reflection coefficient (see Fig. 3.17) occurring the first at

grazing angles ∼0-10 degrees and the second at grazing angles ∼50-60 degrees, with severe

attenuation for the other grazing angles. These peaks of reflection coefficient magnitude are

formed as result of the process given by (3.4) to compute a bottom loss model for a layered

seabed, as described in subsection 3.1.3.

The most important results of this test are given in terms of received time-reversed

constellations, since it is indicated how each mismatch in the CIR estimate affect the time-

reversal performance. Figure 3.19 shows receiver constellations computed assuming the

mismatch between the reference “actual” CIR from sand bottom and each CIR “estimate”

of Fig. 3.18 from the reflection coefficients of Fig. 3.17 for bottom types: clay, silt, sand,
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gravel, moraine, chalk, limestone and basalt, with properties set according to Table 3.2.

The sand-sand case shows the constellation diagram with dense clouds and no rotation,

as expected, since this is the mismatch free case. One may note that even with an ideal

matching between the “actual” CIR and the “estimated” CIR (since both are generated

from sand bottom), there is some cluster variance. This effect may be explained by the

existence of residual ISI caused by multipath in the PTR Q-function (see 2.15) due to poor

spatial resolution of the array. A 14-hydrophones vertical line array spanning from 20 to 59

m depth, equally spaced of 3 m, are used in these simulations, as previously described in

Sec. 3.2. Note that the PTR simulations were done for noiseless channels aiming to make it

clear the possible trends in the results.

The constellation result for the sand-silt case (i.e., the actual CIR is generated with sand

bottom and the estimated CIR is generated with a silt bottom) present similar features

than the sand-sand case, except for a slight cluster expansion and very low rotation. This

fact may be explained by the sand bottom and the silt bottom have similar reflectivity

conditions and the CIR in this simulation has a good match. This fact is interesting for

the use of environmental focalization because if the optimization use the parameters of silt

bottom instead of sand bottom, or the opposite, then it is expected not occur severe CIR

mismatch in the PTR filtering, thus having low influence in the PTR output.

The constellation results for the other types of bottom show a severe cluster expansion

and significant cluster rotation. The worse results in what regards constellation expansion

are obtained with basalt and clay, indicating that they have strong differences relative to

the sand bottom.
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These tests of PTR sensitivity to geoacoustic parameters were done for the particular

shallow water scenario described previously in Sec. 3.2 (i.e., 3 km source-receiver range, 84 m

water depth, source at 40 m, 14 hydrophones spanning from 20 to 59 m, 3m equally spaced,

and 12 kHz carrier frequency) generating results that suggest the points discussed above,

that are an useful knowledge for environmental focalization in time-reversal communications.

However, to reach more consistent conclusions it is suggested to perform other simulations

in different waveguide scenarios and frequency bands to check if the trends observed above

test are still verified from a general viewpoint.

3.4 PTR sensitivity to geometric parameters

Geometric parameters, as source and receiver positions, are expected to cause severe influence

in the underwater acoustic field, because the different positions can have particular multipath

structure and, mainly, the relative source-receiver movement causes Doppler effect that must

be compensated in coherent communications, otherwise the demodulation is severely affected

by frequency shift and phase rotation. A test of geometric parameter sensitivity can be found

for low frequency in [69], in a context of checking sensitivity of objective functions in MFP

to the parameters variability, obtaining results that suggest a higher sensitivity to source-

receiver range and receiver depth than to other parameters. In [70], physical modelling is

used in a high frequency band, from 2 to 10 kHz, to test the transmission loss sensitivity

to geometric parameters. It used Monte Carlo simulations to vary geometric parameters,

according to a uniform distribution law within plus or minus 10 percent from the initial

value in a range-independent environment, yielding results that suggested the geometric

parameters to have a significant influence on transmission loss.
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This section presents a geometric parameter sensitivity test in the context of underwater

communications, generating results in terms of CIR and time-reversed demodulated symbols.

First some considerations on multipath structure changes due to varying the source-receiver

range are given. Then, a test is proposed in Sec. 3.4.1 to vary the source-receiver range

during the transmission time, assuming a particular source horizontal velocity in a time

variable acoustic propagation model, and thus the Doppler Spreading Function (DSF) and

the constellation diagram of a standard time-reversal receiver output are checked.

At first glance, a Doppler effect on the received signal is obviously expected to be

observed, since movement is imposed to the source. But the degree of distortion caused

by particular values of source velocity over a QPSK constellation output of a time-reversal

receiver in a shallow water scenario is unknown, and it can be observed in the results,

reaching some sensibility in terms of constellation rotation.

One may note that the expected Doppler effect is not simply over a direct path. The

waveguide scenario brings an additional complexity to the Doppler distortion of received

signals because there are also boundary reflected paths, subject to a particular distortion on

each path according to a corresponding Doppler compression or dilation factor. Such factor is

appropriately described in the simplified scenario named bi-scattering geometry model [65],

which present the propagation from a transmitter to a receiver through an indirect path

reflected in a scatter point. A brief description of the path Doppler effect in a waveguide is

presented in Appendix D.

An issue that may occur due to varying the source-receive range is the modification of

the multipath structure such that a new eigenray path may arise. To illustrate this issue Fig.

3.20 shows an example of the path structure changing in a simplified waveguide, where the
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Bellhop ray trace model [46] simulates few eigenrays for a source-receiver range of 190m and

193m. The hypothetic waveguide is a range-independent transect with 70 m water depth,

isovelocity sound speed profile (1500 m/s), 20 m source depth and 50m receiver depth. The

launching rays is limited to 10 degrees in both cases for the sake of clarity of the eigenrays

figure.

Figure 3.20: Example of the path structure changing in a simplified waveguide. Bellhop model
eigenrays simulation (launching rays limited to 10 degrees) for source-receiver range of 190 m (a)
and 193 m (b). Range-independent transect with 70 m water depth, 1500 m/s isovelocity sound
speed profile, 20 m source depth and 50m receiver depth.

On the left are the modeled eigenrays for the 190 m source-receiver range and on the

right are the modeled eigenrays in the same conditions except for the source-receiver range of

193 m. The normalized channel impulse responses corresponding to the multipath scenario

of Fig. 3.20 (a) and (b) are shown in Fig. 3.21 (a) and (b), respectively.

The comparison of the tho cases clearly indicate that there is a new significant path in

Figures 3.20 (b) and 3.21 (b), for source-receiver range 193 m, that is not in Figures 3.20

(a) and 3.21 (a), for source-receiver range 190 m, showing thus a change in the multipath

structure, which is confirmed by the corresponding CIR of Fig. 3.21 (a) and (b). Nonetheless,

this effect is not continuous in the sense that a small change in source-receiver range not

necessarily generates the waveguide conditions to emerge a new eigenray. In some cases, the
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(a) (b)

Figure 3.21: Normalized CIR modeled for source-receiver range of 190 m (a) and 193 m (b), with
the parameters used in the multipath scenario shown in Fig. 3.20.

number of eigenrays remains the same and only their positions change slightly.

3.4.1 Sensitivity to the source horizontal velocity

The ray trace model is adopted for modelling time-invariant snapshot CIR. But when in

presence of a variation of position during the transmission period a time-variant system is

required. The Time Variable Acoustic Propagation Model (TVAPM) [71] is used to compute

the time-variant channel. The Time Variable Acoustic Propagation Model (TVAPM) aims

at simulating underwater acoustic propagation in time-variant channels, using sequential

runs of the Bellhop model and time-variant filtering [60, 59]. Required inputs to dynamic

propagation simulations with TVAPM are: a transmit signal is specified as input; linear

velocities can be attributed to both source and array and the corresponding positions are

updated progressively along transmissions.

The time-reversal filter for each channel in this simulation is the CIR in the initial state

(initial CIR snapshot). Thus, it is possible to observe the effects of the constant variation

of the source position (i.e., constant velocity) along the transmission over the time-reversal
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output constellation.

Figure 3.22 on first column (a,c,e,g and i) shows the Doppler Spreading Function and on

second column (b,d,f,h and j) the PTR output constellation diagram for a moving source

with velocities 0.0 m/s (a,b), 0.3 m/s (c,d), 0.6 m/s (e,f), 0.9 m/s (g,h) and 1.2 m/s (g,h)

in the waveguide scenario described in Sec. 3.2.

The DSF figures on the left column indicate a Doppler frequency shift increasing trend,

as expected, corresponding to each particular increase of source speed, where the vertical

axis denotes the frequency-shift in Hz and the horizontal axis denotes time in ms. The

constellation of the received signals, simulated with TVAPM, after being processed by a

standard time-reversal processor are presented on the right column. These results clearly

indicate that there are phase rotation distortion. These results are explained by the fact that

the Doppler compression factor causes a resampling effect in the received signal, changing the

phase of the QPSK symbols which thus causes a constellation rotation along the transmission

time. In the frequency domain the compression factor causes frequency shift and spectrum

distortion [65]. In coherent communications, which uses the signal phase to carry information

of a data message, it is essential to compensate (or avoid) such type of distortion, otherwise

the message recovery is severely degraded.

Also, one may note that small velocities as, e.g., 0.6 m/s, are sufficient to severely distort

the constellation of the received signal after being processed by PTR. Resampling techniques

are often required to undo the compression or dilation distortion caused by the Doppler effect,

employing short probe sequence to capture the compression factor and then resampling to

compensate it in the received signal.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Source-velocity = 1.2 m/s

Figure 3.22: DSF (a,c,e,g and i) and PTR output constellation diagram (b,d,f,h and j) for a moving
source with velocities 0.0 m/s (a,b), 0.3 m/s (c,d), 0.6 m/s (e,f), 0.9 m/s (g,h) and 1.2 m/s (g,h)
in the waveguide scenario described in Sec. 3.2.
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Figure 3.23 shows a short presentation of the more significant trends observed in results

for source horizontal velocity, in terms of Doppler Spreading Function (DSF) (see equation

3.3) and received time-reversed constellation.

Figure 3.23: Trends observed in the results for source horizontal velocity sensitivity testing.

The constellation results show that for source velocity 0.0 m/s the signal recovery is

successful, for velocity 0.3 m/s is sufficient CIR mismatch to generate small constellation

rotation and a modest amount of errors and for velocities greater then 0.6 m/s severe

distortion occurs, with the clusters tending to form a ring shape, precluding the correct

demodulation of the received symbols.
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3.5 Discussion

The concepts on waveguide acoustic propagation and simulations for parameters sensitivity

presented in this chapter suggest that a set of physical parameters related to the environment

and the geometry between source and receivers severely influence the behavior of acoustic

propagation, affecting the CIR and consequently the received communication signals.

The knowledge obtained of the present sensitivity testing indicates that the geoacoustic

parameters are important to shallow water communications, being the compressional sound

speed in sediment layer the most important due to straightforward affecting the CIR path

delays. An equalization processor may need to deal with the issue of finding the path delays

that better represent the actual channel and use this information to design filters for com-

pensating channel distortions. The other geoacoustic parameters still affect the propagation

but, in general, have a less important role. The geometric parameter source-receiver range

is fundamental for shallow water communications, since its variation along the transmission

causes changes in the multipath structure and severe Doppler effect that must be mitigated,

otherwise the communications performance may be significantly affected. Also, the sound

speed profile (simulation not shown) is very important to shallow water communications

since it determines the rays refractions along the water column. The understanding of such

processes are used in the proposed EPTR (tested with real data in Chap. 5), namely by

giving a higher resolution to the most important physical parameters for shallow water com-

munications. In this context, an appropriate “a priori” search space in EPTR is chosen by

selecting as input sets of physical parameters with better chance to generate realistic CIRs

for a successful environmental focalization.
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Experimental results

Preview This chapter presents experimental results of time-reversal communications based

on channel identification with pulse compression, `1-norm regularization and environmental

focalization. The data sets were acquired between May 24 and May 27, 2011, during the

UAN’11 experiment in the Strindfjorden, Trondheim (Norway). The results show that the

proposed environmental-based time-reversal method, which employs physical modelling, out-

performs the standard pulse-compressed time-reversal system for coherent underwater acous-

tic communications. Section 4.1 gives a brief description of the “Underwater Acoustic Net-

work’11” sea trial; Section 4.2 compares results of the PC-PTR and PC-EPTR for two data

sets collected on May 24 and on May 27; Section 4.3 introduces the Reg-L1 in the comparison

tests; and Section 4.4 presents results of the PC-PTR, RegL1-PTR and PC-EPTR for a long

term performance analysis of ten data sets covering a elapsed time of 250 s and containing

five hundred thousand symbols.

4.1 The “Underwater Acoustic Network’11” sea trial

The UAN11 experiment took place in the Strindfjorden, Trondheim (Norway) in May 2011.

During this experiment a network composed of several nodes, including both mobile (AUV

mounted) and fixed (moored) transmitters/receivers, was deployed and operated during the

whole period. Every node of the network was equipped with modified Kongsberg cNODE

Mini modems and one of the nodes included a receiving only vertical array with 16 channels

- the Sub-surface Telemetry Unit (STU). Detailed characteristics of the environment and

the signals transmitted during the seal trial are presented in [72] and briefly in the following

83
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sections.

4.1.1 General aspects

The UAN11 experiment was part of the Underwater Acoustic Network project (UANp),

whose objective was to conceive, develop and test at sea an innovative wireless network

integrating submerged, terrestrial and aerial sensors for the protection of off-shore and

coastline critical infrastructures.

The experiment should, among other goals, serve to determine the performance charac-

teristics (e.g., bandwidth, achievable bit rate, resilience/delay time) of digital transmission

over acoustic underwater channels as a function of transmission frequency, signal modulation

and environmental characteristics (including sound speed, bathymetry and channel geometry

driven by source/receivers depth and range). Also, a high data rate point-to-multipoint com-

munication link used to transfer sizeable data was considered in the project, part of which

is the data analyzed in this thesis. See further objectives and details of the experiment in

[72].

4.1.2 Environmental data

Bathymetry and source / receiver-array geometry

Figure 4.1 shows the bathymetry of the UAN11 sea trial in the eastern part of the Strind-

fjorden with the network nodes’ positions superimposed. Various fixed nodes (FNO), the

hydrophone array fiber optic connected to shore (STU), the pier and two mobile nodes

(OBJ) are shown. This work considers the data obtained on the transect between source

node FNO2 and the receiving multichannel array STU between May 24 and May 27.

The source is at 28 m depth and 890 m away from the STU, a vertical line array of
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Figure 4.1: UAN’11 network node position superimposed on the bathymetry map of the area:
FNO# denotes fixed nodes, STU is the Sub-surface Telemetry Unit multichannel array and OBJ#
denote AUV mounted mobile nodes. The transect between FNO2 and the STU is 890 m long, and
is range-dependent attaining a maximum depth of 100 meters.

16 hydrophones 4 m equally spaced, spanning from 14.1 to 74.1 m depth. Both the source

and the receiving array are moored at the marked positions, therefore sensor movement is

expected to be reduced. In addition, the tide variation at the experiment site is less than 2

m, considered small relative to the water depth of about 38 m at the source position and 98

m at the receiving array position.

Sound speed profiles for days May 24 and May 27, 2011

Several Conductivity Temperature Depth (CTD) casts were made during the UAN11 sea

trial. The measurements made on May 24 and on May 27 with CTD#4 located near the

STU are used in this work. The two Sound Speed Profiles (SSP), are shown in Fig. 4.2. The

figure shows upward refracting profiles bellow ∼40 m, downward refracting profiles above

∼40 m and an initial formation of a mixed layer above ∼20 m on May 27, that was not

present on May 24.
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(a) (b)

sound velocity (m/s) sound velocity (m/s)

Figure 4.2: Sound velocity profiles measured with CTD#4 near the STU location on May 24 (a)
and on May 27, 2011 (b).

Transect scenario and seabed geoacoustic properties

Figure 4.3 shows an idealized scenario of the FNO2 - STU 890 m transmit-receiver leg during

the UAN11 sea trial, based on bathymetry information and on historical data for the seabed

parameters.

Figure 4.3: FNO2 - STU transmit-receiver leg during the UAN11 sea trial: range-dependent
transect (890m), source depth 28.2m, 16 hydrophones VLA 4m equally spaced from 14.1m to
74.1m, 5m fluid sediments layer with cp1 1550 m/s, ρ1 1.8 g/cm3 and αp1 0.8 dB/λ, over viscoelastic
bottom half-space with cp2 1550 m/s, cs2 250 m/s, ρ2 2.0 g/cm3, αp2 0.1 dB/λ and αs2 2.5 dB/λ.
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The transect is strongly range-dependent with water depth varying between 38 and 98 m.

The bottom parameters were derived from historical information of the area: a “rock bottom

covered by mud or clay”, using the Hamilton relations [45] and also using the information

in [72]. The adopted environmental model is composed of a 5 m thick sediment layer over a

bottom half space. The typical seabed parameters are shown in Fig. 4.7 and are described

in Table 4.1.2. These values are used as reference for determining the search space for

environmental focalization.

Table 4.1: Typical geoacoustic parameters in UAN11 area.

Geoacoustic parameters
Layer Sound speed (m/s) Attenuation (dB/λ) Density (g/cm3)

Sediment layer 1550 0.8 1.8
Bottom half-space 2100 0.1 2.0

4.1.3 Equipment

The data set used in this work were transmitted by the Fixed Node 2 (FNO2) and received

on a Vertical Line Array (VLA) of sensors connected to a moored telemetry system (the

STU), forming a single-input-multiple-output acoustic transmission.

The Sub-surface Telemetry Unity (STU) was used in the UAN11 experiment to acquire

multiple received signals via the VLA [73]. It was positioned at location 63.4417°N and

10.7135°E, from where the received signals were then sent through a fiber optic cable to

a shore laboratory. The STU is additionally equipped with a KM cNode modem and a

12 sensors thermistor chain. The STU recorded the QPSK modulated acoustic signals at

sampling frequency 60 kHz, with synchronization pulses at the start-end of each frame of

acoustic data set, as described in the next subsection.
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The FNO2 containing the acoustic source was moored at location 63.4470°N and

10.7261°E. The Konsberg Maritime (KM) modem is the source considered in this work,

being deployed at 28.2 m depth. The specifications of this modem is given as the

cNODE-Mini modem transponder model 34-180 provided by Kongsberg Maritime (KM,

Kongsberg, Norway), specifically adapted to tasks of the UAN’11 experiment [72]. This

acoustic modem is described in detail in [74] and has a 180 beam pattern transducer at a

center frequency of 25.6 kHz, with a bandwidth of 8 kHz and an emitted power between

173 and 190 dB re 1µPa@1m. Figure 4.4 shows on the left a picture of the KM modem

used for single-input-multiple-output acoustic transmissions and on the right the scenario

of one transmit-receive leg of the UAN11 sea trial where the KM modem was employed.

Figure 4.4: Modem Kongsberg cNode-Mini used for single-input-multiple-output acoustic trans-
missions (left) and a scenario of one transmit-receive leg of the UAN11 sea trial where the modem
was used (right). The vertical line array with a yellow subsurface float is the STU and the source
near the shore is the FNO2.

4.1.4 Acoustic data

Random sequences and images were transmitted with the KM modems, with symbol rate up

to 4000 symb/sec using BPSK and QPSK digital modulation schemes at a carrier frequency

of 26.5 kHz. Next, the data frame structure and the group of data sets processed in this

work are described.
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Data frame structure

During days May 24 and 27, the message data were the pixels of a gray image, converted into

a bit stream QPSK modulated at a data rate of 4000 bit/s. The signals processed in this

work follow a fixed frame containing a payload bit stream that corresponds to the converted

pixels of a low resolution gray image. Figure 4.5 shows the transmitted image.

Figure 4.5: Image message used as payload for some of the signals transmitted during the UAN11
experiment. The QPSK modulation received signals at 4000 bit/s are processed in this work.

The data frame structure is shown in Table 4.2 and has a total size of 50000 symbols,

thus containing 100000 bits.

Table 4.2: Frame structure of the transmitted data (size and generator polynomial of m-sequences).

Type Preamble m-seq. Header M-seq.+Message slot Postamble m-seq.
Nr. of symbols 511 40 20×(127 + 1873) 511

Gen. poly. 110011000 - 1000001 110001001

The structure of this data frame is organized (in order) as a preamble m-sequence with

511 symbols, an header with 40 symbols, a payload and postamble m-sequence with 511

symbols. Further, since the bit stream length is variable according to a particular message

or set of image pixels and the frame size is fixed (50000 symbols), a constant stream of

symbol 1 is positioned at the end of the payload with the length needed to complete the

frame size. Fig. 4.6 shows the spectrogram of a signal received at the deepest STU array
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hydrophone where the constant stream is seen as a tone at the carrier frequency after the

payload end and before the final postamble, between seconds 20 and 25.

Figure 4.6: Spectrogram of a signal received at hydrophone 1 (deepest, at 74.1 m), with sound
pressure level (SPL) in decibel referred to 1µPa at 1m. Carrier frequency 25.6 kHz. The constant
stream of 1’s is filling the data packet between seconds 20 and 25.

The preamble and postamble are used to perform time compression/dilation compen-

sation, aiming at removing clock synchronization impairments between transmitter and re-

ceiver and a possible Doppler trend. The payload contains the bit-stream message corre-

sponding to the image pixels and a sequence of 20 short m-sequences with 127 symbols each,

which are inserted every second for channel tracking. In the following section , these short

m-sequences will be used for CIR estimation through PC and environmental focalization,

respectively. The final channel matched-filter for the time-reversal receiver is performed with

the mean CIR over the 20 short m-sequence estimate, both for PC-PTR and EPTR.

Data set

The data set processed in this work are composed by ten QPSK frames collected in the

UAN’11 sea trial. They form a reasonably large amount of data, totaling five hundred



4.2. Experimental results I: comparison of PC-PTR with PC-EPTR 91

thousand symbols (thus, 1 million binary digits) collected between May24 at 20h35m and

May 28 at 00h05m. Each frame has sufficient size of payload to contain all the pixels of the

gray image of Fig. 4.5.

Table 4.3 shows for each frame the identification number (left column), the transmission

date (middle) and the transmission start time (right).

Table 4.3: Transmission start times of each UAN11 data frame processed in this work.

Frame ID number Date Start time

241 May24 20h35m59s

271 May27 22h52m03s

272 May27 22h55m30s

273 May27 23h06m02s

274 May27 23h08m25s

275 May27 23h20m02s

276 May27 23h27m02s

277 May27 23h45m44s

278 May27 23h54m05s

279 May27 23h59m45s

4.2 Experimental results I: comparison of PC-PTR
with PC-EPTR

This section compares the results obtained with conventional PC-PTR and PC-EPTR on

real data records acquired in two days of May 2011 during the UAN’11 experiment. The first

data set was collected on May 24 with identification number 241 and the second was collected

om May 27 with identification number 275. The choice of these data sets is justified by the

the fact that they were collect in different days, thus with different sound speed profiles, and

therefore to check the ability of the EF algorithm to perform in two different environmental

settings.
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The results will show that PC-EPTR clearly outperformed the conventional PC-PTR by

an amount of 1 to 4 dB in mean-square error (MSE) and bit error rate (BER). The results

also show that environmental model-based methods may be used with success on real data

underwater communications.

4.2.1 Environmental focalization setup

The adopted environmental model is composed of a 5 m thick sediment layer over a bottom

half space, which characteristic parameters are listed in column “Reference” of Table 4.4.

This table also shows in the last two columns, the search interval and number of discretiza-

Table 4.4: Environmental physical parameters for propagation modeling and focalization

Physical parameter Unit Reference Search Size

Water column
Source-receiver range (m) 890 870 - 910 5
Source depth (m) 28.1 26.50 - 29.50 5
Array depth (m) 14.1 13.10 - 15.10 5
Sound speed profile (m/s) (see Fig. 4.2)
Sediment
Thickness (m) 5 - -
Comp. speed cp1 (m/s) 1550 1480 - 1620 10
Comp. attenuation αp1 (dB/λ) 0.8 0.60 - 1.00 2
Density ρ1 (g/cm3) 1.8 1.30 - 2.30 2
Bottom
Comp. speed cp2 (m/s) 2100 - -
Shear speed cs2 (m/s) 250 - -
Comp. attenuation αp2 (dB/λ) 0.1 - -
Shear attenuation αs2 (dB/λ) 2.5 - -
Density ρ2 (g/cm3) 2 - -

tion intervals, respectively, for those parameters included in the environmental focalization

procedure discussed below.

The environmental focalization was performed with exhaustive search optimization based

on the Bartlett processor for a search space with 5000 replicas. This size is obtained by the



4.2. Experimental results I: comparison of PC-PTR with PC-EPTR 93

product of all the discretization intervals in the last column of Table 4.4, i.e., the search

space size is given by 53× 10× 22 = 5000, which represents the combination of all “a priori”

parameter values. Note that the exponential nature of the search space size , with the

number of parameters and their discretization, causes the very fast increase in the number

of candidate replicas if an excessive number of discretization intervals are declared. Thus, a

careful choice of the “a priori” parameters must be done aiming to generate an appropriate

search space and avoid an exaggerated computational cost. An alternative procedure to

reduce computation time, but that was not tested in this work and may be suggested for

future work, is to use a global optimization technique, such as simulated annealing or genetic

algorithms.

In order to obtain a glimpse of the possible propagation conditions for an acoustic trans-

mission between FNO2 and the STU, Fig. 4.7 shows the Bounce/Bellhop model computed

eigenrays between the source location and each of the vertical array receivers along the tran-

sect with the following path color coding: direct (magenta), surface reflected (blue), seabed

reflected (red) and surface-bottom reflected (gray).

One can see that there are very few bottom-reflected rays (in red) reaching the hy-

drophones 6 to 9, in comparison to the surface-reflected rays (blue) that reach all hy-

drophones. This occurs due to a low slope bottom near the source followed by a high

slope bottom, creating a shadow zone for bottom-reflected rays. For this reason, it is ex-

pected that the CIR will have a second arrival path with a higher frequency spread (due to

free surface motion) than the first arrival path.
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Figure 4.7: Scenario for the transmitter-receivers transect (FNO2-STU): range-dependent 890 m
long transect, source depth 28.1 m, 16 hydrophones vertical array 4 m equally spaced from 14.1 m to
74.1 m depth, maximum water depth 100 m, 5 m sediment layer (in dark-yellow color) over bottom
half-space (in orange color). The eigenrays are color coded as follows: direct paths in magenta,
surface-reflected paths in blue, bottom-reflected paths in red, and surface-bottom-reflected paths
in gray.

4.2.2 “A posteriori” physical parameters

The physical parameters that generate the CIR replicas that best match the PC estimated

CIR are obtained as the output of the acoustic focalization algorithm after an exhaustive

search over the parameter space defined in columns “Search” and “Size” of Table 4.4.

The dimension of the search space which results from Table 4.4 is 5000. Although the

focus of this work is not on environmental inversion, the obtained “a posteriori” physical

parameters can be seen as a by product of the PC-EPTR communication system. The

geometric parameters denote the physical parameters directly related to the source and

receiver positions, i.e., source-array range, source depth and the receiving array depth (using

the shallowest hydrophone as reference).

Figure 4.8 shows for snapshots 1 to 20 the evolution of the combination of the geometrical

physical parameters source-receiver range, source depth and array depth (using the shallowest
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hydrophone as reference) that generated the three best CIR replicas for the data set #241

collected on May 24 (a) and the data set #275 collected on May 27 (b): the best fitness

maximum “a posteriori” parameter estimates (dash blue-circle), the second best fitness

parameters (dash red cross) and the third best fitness data (dash green cross). It can be seen

that there is a reasonably good agreement between the three candidates for each geometric

parameter, even though the data set #275 shows a higher variation than the data set #241.

In addition to the parameters shown in Fig. 4.8, the geoacoustic parameters of the sediment

layer shown in Table 4.4, are also used in the focalization process.

Figure 4.9 shows for snapshots 1 to 20 the evolution of the combination of the geoacoustic

physical parameters sediment compressional sound speed, sediment density and sediment

compressional attenuation that generated the three best CIR replicas for the data set #241

(a) and the data set #275 (b).

For the scope of this work that aims at generating an appropriate CIR for increasing the

performance of time-reversal communications, the accuracy of the “a posteriori” parameters

is a secondary issue. The most important issue is that the physical parameters in the search

space should improve the adjustment between CIR replicas and observed CIR, during the

objective function optimization, through environmental focalization.

Further, since there are physical parameters not inverted for, i.e., parameters with fixed

values along the optimization, it is expected to observe variability on the output inverted

parameters that is not only due to their actual physical variability, but also due to the

their ability to compensate those fixed parameters not considered for optimization. This

procedure that divides the channel parameters in two component groups, one fixed and the

other variable, is usual in matched-field inversion [75].
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(a)

(b)

Figure 4.8: Maximum a posteriori geometric parameters source-receiver range, source depth and
array depth (using the shallowest hydrophone as reference) obtained through environmental focal-
ization for each slot of the data set #241 received on May 24 (a) and #275 received on May 27
(b). The three best fitness set of parameters are shown: maximum “a posteriori” set (blue circles),
second maximum set (red cross) and third maximum set (green cross).

The compressional sound speed in the sediment repeatedly reaches the lower boundary

of the search space along the time slots (not shown). At first, one is tempted to decrease the

lower boundary of the search space, but since its value is 1480 m/s, already lower than the

mean water sound speed, it was decided to maintain the search interval in order to avoid

generating an excessively non-realistic environment.
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(a)

(b)

Figure 4.9: Maximum a posteriori geoacoustic parameters sediment compressional sound speed,
sediment density and sediment compressional attenuation obtained through environmental focal-
ization for each slot of the data set #241 received on May 24 (a) and #275 received on May 27
(b). The three best fitness set of parameters are shown: maximum “a posteriori” set (blue circles),
second maximum set (red cross) and third maximum set (green cross).

The environmental focalization yields an equivalent environmental model [76, 44] as by

product. The equivalent model consists in the employment of a set of acoustic propagation

physical parameters to generate a environmental model that maximizes an objective function,

not regarding if that parameter set in fact represents the actual environment. Therefore,

some degree of compensation between particular “a priori” parameters may occurs in the
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process to optimize the “a posteriori” parameter set that generate the output CIR of the

environmental focalizer, which we use here for channel equalization.

In this work the bottom half-space parameters were not optimized for because it is

expected that at this high-frequency regime (carrier frequency at 26.5 kHz) the propagating

signals have very small interaction with that region, due to strong attenuation on the seabed

and rays refraction occurring only in the sediment layer.

More controversial is that, also the SSP was not optimized for during the focalization

process. Instead, the profiles taken nearby to the STU receiving array of Fig. 4.2 were

used. However, the SSP is an important modeling parameter since it directly influences

the refraction of the propagating rays in the water column and its time variability has a

certain impact on the CIR. The reason for not including the SSP in the search space was

twofold: one is that there was no sufficient ground truth information on previous SSP in the

source-receiver transect location; and two it would substantially increase the search space

and therefore the computational cost. The SSP difference between the two days makes data

set #241 (May 24) a much benign channel than data set #275 (May 27), with a diagram

constellation with low cluster variance and better performance, as it will be shown in the

next subsection.

4.2.3 Analysis of time-variant CIR data

In this subsection we will analyze the time-variant CIR, whose estimate may be obtained

by PC of the received signals using the transmitted probes or by environmental focaliza-

tion based on noise-free physical modelling, after polyphase resampling for removing of an

eventual Doppler trend.
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Figure 4.10 shows the wavefronts estimated with PC (a) and modeled after environmental

focalization (b) for the data set #241 (see Table 4.3), in a 16 ms time window. The PC

and EF based on PC, described in detail in Chap. 2, are used to compute the wavefronts

shown in Fig. 4.10 (a) and (b), respectively. The wavefronts show that the two first arrivals

(a) (b)

Figure 4.10: Wavefronts estimated by PC (a) and by EF based on PC (b) for data set #241 The
colorbar shows magnitude in decibel referred to full scale (dBFS).

are clearly distinguished with a good match between data and model. The first wavefront

has a maximum of energy at the minimum of the sound speed while the second wavefront

is downward propagating. Clearly the wavefronts estimated with PC are noisy while those

obtained with EF are noiseless and therefore much better defined.

Figure 4.11 shows, for the data collected on May 24 at the hydrophone 6 (54.1 m depth),

the CIR estimated with PC in time-delay representation along the 20 seconds (a), the mean

CIR estimated power (b), the CIR modeled by EF in time-delay representation (c) and the

mean CIR modeled power obtained by EF (d). Comparing plots 4.11 (a) and (c), a good

match is clearly visible between path arrival times and amplitudes. There is a considerable

amount of noise , of about -10 dB, on the PC estimated CIR, which tends to obscure the

secondary paths with smaller magnitude. As expected, comparing the first and second rows

of Fig. 4.11, the noise reduction is clearly noted.
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(a) (b)

(c) (d)

Figure 4.11: CIR for the data collected on May 24 for the data set #241 at hydrophone 6 (54.1 m
depth) estimated by pulse compression (a) and (b) and modeled through environmental focalization
(c) and (d). Time-delay CIR representation (a) and (c) and average magnitude CIR (b) and (d).
The colorbar shows normalized magnitude in dBFS.

Figure 4.12 shows the same type of plots as Fig. 4.11 but for the data set #275 of May

27. Again in this case and despite the very different sound velocity profiles (see Fig. 4.2), the

capture of the overall path arrival structure as well as the small scale variability is obtained

in the modeled data of Fig. 4.12, plots (c) and (d), when compared to plots (a) and (b),

respectively. Note, however, a discrepancy on the mean arrival time of the late path at

around 14 ms delay when comparing plots (b) and (d). Despite the fact that EF generates

noise-free CIR replicas to replace the noisy CIR estimates in the time-reversal processing,

these replicas may have modelling errors that tend to appear in the weaker paths, as shown

in Fig. 4.12 (b) and (d). Even so, if the EF succeeds, the modelling errors are sufficiently

small and thus the communications performance is improved.
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(a) (b)

(c) (d)

Figure 4.12: CIR for the data set #275 collected on May 27 at hydrophone 6 (54.1 m depth)
estimated by pulse compression (a) and (b) and modeled through environmental focalization (c)
and (d). Time-delay CIR representation (a) and (c) and average magnitude CIR (b) and (d). The
colorbar shows normalized magnitude in dBFS.

Fig. 4.13 compares the baseband complex envelope estimated with PC with that obtained

by environmental focalization for snapshot 4 of the data set #275, hydrophone 6. This

Figure 4.13: A CIR snapshot comparison: envelope of complex baseband equivalent CIR obtained
by PC estimation (magenta) and by environmental focalization (blue), for hydrophone 6 of the
data set #275, slot number 4.

comparison illustrates the much lower noise level on the “a posteriori” modeled CIR snapshot,
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when compared to the corresponding pulse-compressed estimate and also the wrong estimate

of the arrival time of the late path.

4.2.4 Communication performance analysis

In this subsection we will evaluate the performance of the communication system in recov-

ering the transmitted message. This may be done in a variety of forms, one of which is by

observing the received signal constellation diagram, as shown in Fig. 4.14 for the data set

#241 processed with PC-PTR (a) and PC-EPTR (b) and for the data set #275 processed

with PC-PTR (c) and PC-EPTR (d). It can be observed that the PC-EPTR constellations

are better separated than the PC-PTR constellations. This assertion is striking for the

data set #275, plots (c) and (d). This reduced cluster variance means a clear soft-decision

improvement.

Another, possibly more objective, form for performance evaluation is through bit error

rate (BER) and mean square error (MSE). Table 4.5 shows the values of MSE, BER and

number of wrong symbols of these constellations over the whole data horizon, where it is

observed that the PC-EPTR yields a considerable mean MSE gain of 0.93 dB and 3.67 dB

over PC-PTR on May 24 and on May 27, respectively. Observing the constellations and

Table 4.5: Performance analysis of PC-PTR and EPTR.

May 24 PC-PTR EPTR Gain (dB)

MSE (dB) −11.60 −12.53 0.93

BER 1.20×10−3 3.64×10−4 5.19

# errors (out of 71504) 86 26

May 27

MSE (dB) −7.13 −10.80 3.67

BER 3.97×10−2 2.92×10−3 11.34

# errors (out of 71504) 2842 209
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(a) (b)

(c) (d)

Figure 4.14: Constellation of the data set #241 received on May 24, after being processed with PC-
PTR (a) and PC-EPTR (b), and for the data set #275 received on May 27, after being processed
with PC-PTR (c) and PC-EPTR (d).

the numerical metrics it is clear that the performance of the system has been improved by

using the EPTR processor.

Figure 4.15 shows, for each slot along the signal frame, the BER results of the data set

#241 collected on May 24 after being processed by PC-PTR (magenta) and by PC-EPTR

(red), and of the data set #275 collected on May 27 after being processed by PC-PTR (cyan)

and by PC-EPTR (green). Observe that several slots of the data set #241 are error-free,

both for the PC-PTR and the PC-EPTR, while the PC-EPTR results overcome the PC-PTR

results in general, except for slot number 19. For data set #275, only the PC-EPTR yields

error-free slots and its performance by far overcomes the results obtained with the PC-PTR.

Figure 4.16 shows the MSE results along the 20 slots of the signal frame, for data set

#241 with PC-PTR processing (magenta circles/dashed line) and with PC-EPTR (red
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Figure 4.15: BER results per slot: May 24 data set #241 (upper subplot), PC-PTR (magenta) and
PC-EPTR (red); May 27 data set #275 (lower subplot), PC-PTR (cyan) and PC-EPTR (green).
The diamond marker denotes an error-free slot.

circles/dashed line), and for data set #275 with PC-PTR (cyan crosses/full line) and by

PC-EPTR (green crosses/full line). The PC-EPTR results have a lower MSE then the PC-

Figure 4.16: Mean square error of the received equalized communications signal for the full array.
Results along the 20 slots in the data set #241 on May 24 with PC-PTR (magenta) and PC-EPTR
(red), and in the data set #275 on May 27 with PC-PTR (blue) and PC-EPTR(green).
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PTR both on May 24 and on May 27. In particular, on May 27, PC-EPTR outperforms

PC-PTR by approximately 4 dB. Moreover, results shows a consistent improvement along

the 20 seconds data frame.

4.2.5 Discussion

Sections 4.2.1 to 4.2.4 presented the results of coherent underwater acoustic communications

that employ an environmental focalization algorithm for improving passive time-reversal

performance. Environmental focalization works as a sub-processor that uses any available

a priori or historical environmental information to search for numerical model outputs that

best match the channel probe pulse compressed estimates. The fact that these model outputs

are noise free while the originally used pulse compressed estimates are noisy, provides the

potential for the processing gain.

The proposed EPTR algorithm is applied to real data sets acquired in two different days

during the UAN’11 experiment carried out in Trondheim (Norway), over a range dependent

shallow water 900 m long transect. QPSK modulated data packets were transmitted with a

cNode-Mini Kongsberg modem at 4k bits/s during 20 s each day and were received on a 16

channel vertical array. The results obtained show that PC-EPTR outperforms standard PC-

PTR by an amount varying from 1 to 4 dB, in MSE gain, over the two processed data records.

The proposed method is shown to be robust yielding results that are nearly always equal

or better than those provided by standard passive time-reversal, despite the considerable

variation of channel responses both at micro-scale from second to second or from one day

to the other. The results also show that the modeling errors (inevitably) present at the

focalization algorithm output were small enough to still provide processing gain of the noise
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present in the pulse-compressed channel estimate. To some extent the proposed method

trades modeling errors for noise.

The focalization algorithm estimated CIR provides enough detail to capture and to follow

over time the essence of channel variability. It is unknown whether that variability is due to

sensor motion, surface agitation, currents or micro temperature changes, but a minimal set

of physical parameters were able to track it and successfully undo channel paths by matched

filtering the received signal on an array of receivers. The search space for the focalization

was sufficiently small to be exhaustively covered, while still running in a reasonable time on

a laptop computer.

To the authors best knowledge this is the first time that numerical modeling channel

estimates were directly used for channel equalization of underwater acoustic communica-

tions with real data in an useful frequency range, say, over 20 kHz. In that regard, these

results represent a step towards using the potential of connecting environment and channel

compensation in field experiments.

4.3 Experimental results II: introducing the Reg-L1 in
the comparison tests

In this section, coherent time-reversal underwater acoustic communications are tested with

real data for performance comparison when using the following channel identification meth-

ods: pulse compression (PC), the `1-norm regularization (RegL1) and the Environmental

Focalization (EF) based on physical modeling. From the combination of these three methods

with a time-reversal receiver, the following configurations are formed: PC-PTR, the RegL1-

PTR and the EPTR. However, since the EF requires the use of observed CIR data (that can
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be estimated by, e.g., PC or RegL1) to serve as reference for optimization, then the EPTR

can be be configured as PC-EPTR or RegL1-EPTR.

This section processes the data set #274 collected on May 27 (see Table 4.3), evaluating

their MSE and bit error rate Bit Error Rate (BER) for performance analysis. Figure 4.17

shows for channel 8 the time variability of the estimated CIRs. Channel estimates are

obtained with PC (a), modeled with environmental focalization based on PC (c), estimated

with RegL1 (e) and modeled with environmental focalization based on RegL1 (g). Also,

the mean magnitude of the CIRs is shown on the right column, for the four cases, PC (b),

modeled based on PC (d), RegL1 (f) and modeled based on RegL1 (h).

Observe that the time-variant CIRs are sharper, i.e., the path peaks have narrower

lobes, when estimated with RegL1 than with PC. This is due to the sparse estimator design

that includes `1-norm regularization to better explore the sparsity of the CIR in shallow

water. Further, note that, as expected, the modeled CIR generated by EF yields noiseless

wavefronts and noiseless time-delay mean CIRs in comparison to PC, even though there are

some delay mismatch for the later arrival. Despite this drawback, such mismatch tends to

have a relatively small effect in the channel compensation processing because that delayed

peak has a magnitude approximately 10 dB lower than the main peak. Also, one may

observe that there is no significant difference comparing (d) and (h), for PC-EPTR and

RegL1-EPTR, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.17: Channel number 8 estimated CIR from data set #274 with PC (a,b), modeled with
environmental focalization by EPTR based on PC (c,d), with RegL1 (e,f) and modeled with
environmental focalization by EPTR based on RegL1 (g,h). CIRs time variability (left) and mean
power CIRs (right).
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4.3.1 Results on communications performance

Figure 4.18 shows the results in terms of mean square error for the received signal after

being processed by PC-PTR (blue crosses), with RegL1-PTR (red crosses), by PC-EPTR

with PC environmental focalization (magenta circles) and by RegL1-EPTR with RegL1

environmental focalization (green stars), along 20 slots of the signal frame #274 containing

the payload image data.

Figure 4.18: MSE results of May 27 data (signal identification number 274) with PC estimation
(blue), RegL1 estimation (red), PC environmental focalization (magenta) and RegL1 environmental
focalization (green).

The PC-EPTR yields the higher performance in terms of MSE for this data set #274.

The RegL1-EPTR yields similar results to the PC-EPTR, but with slightly worse MSE

performance of ∼1 dB. Also, the PC-EPTR reached a performance ∼4 dB superior to PC-

PTR and marginally better (<1 dB) than RegL1-PTR.

The improvement of the PC-EPTR using environmental focalization over the PC-PTR
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using pulse compression estimation can be explained by the fact that the channel replicas

obtained with environmental focalization are noise-free while the pulse compression channel

estimates are unavoidably noisy. Therefore, assuming that the environmental focalizer suc-

ceeds to mitigate the CIR modelling errors, a gain is generated for PC-EPTR over PC-PTR.

The focus now resides in comparing PC and RegL1 for both PTR and EPTR. The EPTR

based on PC has improved performance relative to EPTR based on RegL1. This is due to

the fact that RegL1 tends to suppress less significant paths, which can probably degrade

the matching between observation and modeled replicas performed with the environmental

focalization processor.

The PTR based on RegL1 has much better performance relative to PTR based on PC.

This is due to the fact that RegL1, using sparse estimation techniques, significantly reduces

the noise effects and side lobes relative to the noisy estimate obtained with PC.

Figure 4.19 shows the received symbols along time after being processed by the PC-PTR

(a) and with the PC-EPTR (b). The figure shows that the symbols variance relative to

the symbol map (marked as red lines) is clearly reduced in RegL1-PTR (plot c) relative to

PC-PTR (plot a), as well as the EPTR (plots b and d, on the right) presents the highest

improvement relative to PC-PTR. Also, the PC-EPTR and the RegL1-EPTR present similar

results.

Figure 4.20 shows the transmitted low resolution image (a), and then the recovered image

with: PC-PTR (b), RegL1-PTR (c) and after EPTR processing based on PC (d). The

received image processed by the PC-PTR (b) presents several wrong pixels (1707 symbol

errors). The image processed by RegL1-PTR (c) corrects significantly the errors, however
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(a) (b)

(c) (d)

Figure 4.19: Received symbols along time after processing with the PC-PTR (a), PC-EPTR (b),
RegL1-PTR (c) and RegL1-EPTR (d). The vertical axis denotes the bit pairs corresponding to the
angles of recovered QPSK symbols. The horizontal axis is the effective time of payload transmission.

remaining 132 wrong symbols. The image processed by EPTR (d) corrects most of such

errors (just 31 wrong symbols remain), yielding an image quite similar to the transmitted

image of (a), thus presenting a clear communication performance improvement driven by

the use of physical channel modeling coupled with environmental focalization.

4.3.2 Discussion

This subsection includes the RegL1 sparse estimator in the processing for PTR and EPTR

for the data frame #274. The results obtained for RegL1-PTR and RegL1-EPTR were

compared to the results of PC-PTR and PC-EPTR. The experimental results suggest that

the RegL1 offers greater advantage in PTR and is not so advantageous in EPTR.
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(a) (b) (c) (d)

SER: 1707/35752 SER: 132/35752 SER: 31/35752

Figure 4.20: Transmitted low resolution image (a), and the recovered image: with PC-PTR
estimation (b), with RegL1-PTR estimation (c), and after processing by EPTR focalization (d).
The corresponding symbol error rates (SER) are given bellow the received images.

The comparison of RegL1-PTR to PC-PTR showed that the sparse approach reduces

substantially the amount of symbol errors. This is due to the fact that the RegL1 explores the

sparse nature of the CIR in the underwater waveguide channel, using the `1-norm factor, to

regularize the classical `2-norm estimation. The results were presented to for a regularization

factor (γ) of 2.3 (see Eq. 2.20), chosen empirically from previous simulations for the scenario

of the UAN11 sea trial. The `1-norm tends to give a higher weight to the strong paths in

the sparse channel impulse response, reducing the effects of noise and side lobes in the CIR,

which otherwise are unavoidable in PC estimation.

The comparison of RegL1-EPTR to PC-EPTR showed that their performance is similar,

with the RegL1-EPTR presenting the disadvantage of an increase of the computational cost.

The PC-EPTR appears to be the better option for applying the environmental focalization

method.

Experimental results yield reasonably low mean square error, allowing to recover the

transmitted image with low error, reaching an MSE of approximately -10 to -13 dB for

RegL1-PTR and EPTR over a real channel of 890 m range and depth between 34 m and 98

m.
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The results obtained from this data set show that the proposed environmental-based

approach outperforms the other two channel identification methods. Nonetheless, as will be

shown in the long term analysis (Sec. 5.4), this is not always the case.

The RegL1-EPTR will not be presented in the next section for long term analysis because

its performance is similar to PC-RegL1 and its computational cost is higher. Therefore, for

simplicity of notation, the PC-EPTR results are here after referred just as EPTR.

4.4 Experimental results III: long term analysis

This section presents the results of the PC-PTR, RegL1-PTR and PC-EPTR (here just

referred to as EPTR) for a long term performance analysis. By long term we mean that

there is a significant increase of the amount of data processed in comparison to to that

analyzed in the last two sections. In this section ten data sets containing 200 slots and the

total amount of five hundred thousand QPSK symbols (thus one million bits) are analyzed.

The transmissions were performed within a period of three days, being the first signal

collected on May 24 at starting time 20h35m and the other nine signals mostly on May 27,

with the last data set recording ending at 00h05m on May 28 (see Table 4.3). For all these

data sets the results of EPTR are compared to the corresponding results of RegL1-PTR and

PC-PTR, aiming at checking the performance of EPTR, its probable gain in a general wide

view, and its robustness over time.

4.4.1 Performance analysis

The long term analysis is presented in terms of MSE performance of the standard PC-PTR,

the sparse RegL1-PTR and the proposed EPTR for the ten data sets of Table 4.3. Figure

4.21 compares the results of the PC-PTR, RegL1-PTR and EPTR, in terms of MSE. The
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symbol slots are denoted for PC-PTR (red triangles), RegL1-PTR (blue crosses) and EPTR

(green diamonds).

Figure 4.21: MSE of soft-decision recovered symbols obtained by EPTR (green diamonds), RegL1-
PTR (blue crosses) and PC-PTR (red triangles) along ten data frames between May 24 and May
27.

Each green diamond, blue cross or red triangle represents a slot containing 1873 QPSK

symbols of image message. The vertical dotted line separate the data sets, each one contain-

ing 20 slots (thus 35752 symbols of a whole image message).

The figure indicates that the MSE results of RegL1-PTR outperformed the conventional

PC-PTR in most of the slots, i.e., except 3 out of a total of 200, noting that each point (red

triangle, blue cross or green diamond) shown in Fig. 4.21 represents a single slot. In terms of

data sets (groups of 20 slots), theRegL1-PTR outperforms PC-PTR results for all the data.

Also, the figure indicates that the EPTR (green diamonds) reasonably outperformed the

conventional PC-PTR (red triangles) for seven of the total amount of ten data sets (#241,
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#271, #273, #274, #276, #277 and #279). However, the EPTR had a performance lower

than that of the RegL1-PTR (blue crosses) in seven of ten data sets (#241, #272 and #275

to #279).

Furthermore, for the sake of clarity in presenting the long term results, Figures 4.22 and

4.23 show the data results of Fig. 4.21 in sub-figures for each data set separately. Table

4.6 shows the MSE results for each data set after being processed by PC-PTR, RegL1-PTR

and EPTR and the corresponding gain obtained with RegL1-PTR and EPTR.

Table 4.6: MSE with PC-PTR, RegL1-PTR and EPTR for ten signals collected in UAN11 experi-
ment.

MSE (dB) Gain ref. PC-PTR (dB)

Data set nr. PC-PTR RegL1-PTR EPTR RegL1-PTR EPTR

241 -11.60 -13.86 -12.56 2.26 0.96

271 -1.89 -9.69 -10.88 7.80 8.99

272 -8.29 -10.62 -6.87 2.33 -1.42

273 -5.74 -11.39 -12.54 5.65 6.80

274 -7.13 -9.99 -10.04 2.86 2.91

275 -9.22 -12.21 -8.22 2.99 -1.00

276 -8.78 -10.74 -9.51 1.96 0.73

277 -8.48 -12.05 -11.53 3.57 3.05

278 -8.37 -11.55 -0.44 3.18 -7.93

279 -4.79 -10.75 -6.59 5.96 1.80

These results clearly indicate that the RegL1-PTR had the best performance, reaching

results with MSE between -13.86 dB and -9.69 dB. The second best performance was achieved

by the EPTR (except for the failed data set #278) with MSE in the range between -12.56

dB and -6.59 dB. The PC-PTR presented the worse performance with MSE in the range

between -11.60 dB and -4.79 dB.
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Figure 4.22: MSE of soft-decision recovered symbols for the data sets #241 and #271 to #275
after being processed by EPTR (green diamonds), RegL1-PTR (blue triangles) and PC-PTR (red
circles).
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Figure 4.23: MSE of soft-decision recovered symbols for the data sets #276 to #279 after being
processed by EPTR (green diamonds), RegL1-PTR (blue triangles) and PC-PTR (red circles).

4.4.2 Channel identification issues

The long term analysis showed that the EPTR MSE performance for the data set #278

severely failed, since most of the slots of this frame have a MSE of ∼0 dB (see Fig. 4.23).

This fact may be due to a failure in the synchronization of the CIR snapshots, in the sense

that the CIR replica from EF must be aligned to the CIR estimate used as reference by the

Bartlett objective function for the CIR optimization. Although the procedure was successful

for most the data sets, this was not the case for the data set #278. To illustrate this fact,

Fig.4.24 shows the CIR replicas obtained with EF for the hydrophone 8 data set #278, where
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the CIR alignment failed, and Fig.4.25 shows for the hydrophone 8 data set #274, where

the CIR alignment was successful.

Figure 4.24: Failure in CIR alignment for the hydrophone 8 data set #278. Plots (a), (b) and
(c) show the CIR in 2D representation for PC, RegL1 and EF, respectively. Plot (d) shows the
average magnitude CIR computed with PC (red line), RegL1 (blue line) and EF (green line). The
first path of EF channel replica wrongly aligned with the second path of PC channel estimate.

In the results of Fig. 4.24 obtained from data set #278, the first path delay for PC (a

and d) and RegL1 (b and d) is at ∼0.2 ms while for EF (c and d) is at ∼0.4 ms, indicating a

misalignment of higher amplitude paths in the EF case, which means that a synchronization

failure occurred. This fact helps to explain the very low MSE performance of EPTR for the

data set #278 shown (in green line) in Fig. 4.23. This loss of performance, caused by the

synchronization failure, is most probably due to an estimation error of the relative amplitude

of the two main peaks with the EF (see Fig. 4.24).

The synchronization processing of the complete set of data frames was done automatically,

i.e., without manual intervention, to test the capability and robustness of the system as a
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Figure 4.25: Correct CIR alignment, in the sense of an accurate time position of the main path,
for the hydrophone 8 data set #274. Plots (a), (b) and (c) show the CIR in 2D representation
for PC, RegL1 and EF, respectively. Plot (d) shows the average magnitude CIR computed with
PC (red line), RegL1 (blue line) and EF (green line).

whole. Since in Fig. 4.24 the relative path delays are well estimated by the EF, it is expected

that an improvement of the synchronization algorithm could recover, at least partially, the

performance loss of EF for data set #278 in Fig. 4.23.

Fig. 4.25 (d) shows a reasonably good match between EF, RegL1 and PC for the path

delays, except for a mismatch of the later arrival, which is not a severe issue since this arrival

refers to a path with low amplitude (10 dB smaller than the main peak), having low influence

in the time-reversal performance.

4.4.3 Discussion

In terms of robustness, the most stable results were reached in ascending order by: EPTR,

PC-PTR and RegL1-PTR. This ranking is justified by the fact that RegL1-PTR was
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successful in all data sets, the PC-PTR presented 8 failed slots and the EPTR presented

15 failed slots of a total amount of 200 slots processed (see Fig. 4.22 and 4.23). The

assumption to define a failure is an MSE greater then -1 dB. Although EPTR was the less

stable in terms of robustness, its results in terms of performance (with exception of the

few failed data) showed a high level of data recovery. However, in 3 out of the 10 data set

analyzed the EPTR did not outperform the PC-PTR (data sets #272, #275 and #278).

The average gain achieved by EPTR over PC-PTR for the 7 data sets that were successful

was 4.7 dB.

The probable reason for the EPTR failure in 15 out of 200 slots or, in other words, for

not have outperformed the PC-PTR in the data sets #272, #275 and #278 may be due

to a synchronization error in the alignment of the modeled replica to the reference CIR

estimate or alternatively due to an insufficient resolution in the search space to represent

the actual channel during the transmission time of a data set. The size of the “a priori”

search space employed in the EF processor was 5000 replicas, as shown in Table 4.4, where

it was assumed that this amount could be sufficient to generate a CIR replica candidate to

successfully represent the channel for equalization while spending a tractable computational

cost (∼1 hour in a laptop with 4 cores). However, one may expect that increasing the “a

priori” search space size, the “a posteriori” CIR replica probably may be improved. This

test with a huge search space (and huge computational cost) was not performed in the

present work, being intended to be done in future steps. Despite of that, in general, the

EPTR results obtained in this work using a 5000 replicas search space were reasonably

good, often outperforming a conventional PC-PTR. The lack in synchronization precision

for some signals may be caused by path destructive interference in channels that have a
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surface-reflected path arriving at approximately at the same time of the direct path in some

sensors. This phenomenon may cause distortion in the amplitude of the CIR main path and

thus produce inaccurate synchronization based in probe-based matched filter.

In terms of performance, the best results were reached in ascending order by: PC-PTR,

EPTR and RegL1-PTR. This ranking is clearly indicated in Fig. 4.21. Both the RegL1-PTR

(for all slots) and the EPTR (for the successful slots) show significant gain over the PC-PTR,

reaching values in the interval of 1.96 dB to 7.80 dB for RegL1-PTR and of 0.73 dB to 8.99

dB for EPTR. Further, for seven data sets the RegL1-PTR has the best performance. But

for the other three data sets (#272, #274, #275) the EPTR has the best performance, with

gain up to ∼1 dB over the RegL1-PTR.

Moreover, beyond those particular results presented for the case of the UAN11 experi-

ment, a remarkable point is that the EPTR does include physical information of the environ-

ment, thus creating a connection between the receiver and the location where it is employed.

The issue of including the channel physics in the underwater acoustic channel equalization

has not been well explored in underwater acoustic communications. However, it is an essen-

tial aspect to be considered for compensating the channel distortions over the received signal,

in the sense that the sound speed profile, the source-receiver location and the geoacoustic

parameters of the seabed, as well as the dynamic nature of the ocean environment, have a

strong effect in the received communications signals.

As described in [77], the additive Gaussian noise channel model is seldom appropriate

for representing signal propagation at communications carrier frequencies and perhaps the

only exception to this are short-range direct path channels in the deep ocean. There are

numerous acoustic propagation models of transmission loss and impulse responses, but they
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have not been applied in a form useful for designing a communications system. Even so, a

fundamental issue in underwater acoustic communications systems is to match the channel

physics to the parameters of the system.

The EPTR aims to insert the channel physics through the usage of environmental fo-

calization (EF). The EF is not independent of the channel estimation in the sense that

it employs a CIR estimate in the objective function for optimization of a search space of

“a priori” parameters that yields the “a posteriori” CIR replica. In spite off that, the EF

showed in this work that the physical parameters of the channel can be usefully employed

to improve underwater communications. Therefore, the EPTR represents a step forward in

the direction for including channel physics to help in overcoming the severe difficulties often

found in underwater channel equalization, specially in shallow water scenarios.

At the present status of this work, we did not search for physical parameter estimation,

but for CIR modeling aiming at improving underwater communications. However, one may

note that “a posteriori” parameters are generated as a by-product of EF. This feature is

promissory in the sense that one may, in future, design an equalizer in which instead of

using abstract coefficients, would use coefficients of environmental parameters. Thus, such

type of equalizer would be able to simultaneously perform underwater communications and

acoustic inversion.



Chapter 5

Conclusions

Preview This chapter presents an overview of the work done in this thesis in the frame-

work of previously reported results, as well as suggest future work. Section 5.1 presents the

work overview with concluding remarks; Section 5.2 summarizes the work contributions; and

Section 5.3 points out some possible future directions for tasks not covered in this thesis.

5.1 Concluding remarks

This work addresses environmental model-based equalization of coherent underwater acoustic

communication channels. Emphasis is given to shallow water scenarios where a natural

waveguide is formed creating a complicated propagation pattern driven by multiple boundary

reflections between the seabed and the sea surface. A proposal of digital equalization

method based on joint physical modelling and environmental focalization is is made, as

an enhancement of the Passive Time-Reversal (PTR) receiver.

The PTR requires the use of single-input-multiple-output link with a sufficiently dense

receiver-array to capture the main propagating modes, as well as the usage of a probe signal

in order to estimate the Channel Impulse Response (CIR) which is employed in time-reversal

filtering. If the channel is stable along the transmission time and the CIR is accurate enough,

then the PTR can significantly reduce the Inter-Symbol Interference (ISI). The precision of

123
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the CIR is a fundamental point in PTR, since even small inaccuracies can cause sufficient

mismatch in the time-reversal filters to severely decrease the communication performance.

Channel identification in PTR is usually done by Pulse Compression (PC), which per-

forms matched filter based on the probe signal. In real data, PC channel estimates are

usually affected by noise in the received probe signal. The PC is based on classical `2-norm

estimation and can be derived from the Minimum Variance Unbiased (MVU) estimator,

which is robust but is not the most accurate method in the case of sparse channels. For such

channels, there are sparse estimators that can generate CIR estimates with improved accu-

racy. This is the case of the Regularized `1-norm (RegL1) method, which uses a technique

inspired in compressive sensing to find an accurate sparse solution. The RegL1 is used in this

work for shallow water channel estimation under the assumption that the CIR in shallow

water environment is nearly sparse. These two methods, PC and RegL1, are tested in PTR

with real communications data and are used as ground truth to the proposed method hereby

named Environmental-based Passive Time-Reversal (EPTR).

The EPTR was designed in this work with the objective to improve time-reversal com-

munications performance through the mitigation of noise effects on CIR identification. The

proposed method inserts noise-free acoustic propagation modelled CIR replicas in time-

reversal filtering, relying on an Environmental Focalization (EF) algorithm to sufficiently

reduce modelling error. The EF algorithm tweaks the environmental parameters to obtain a

noise-free physical model CIR that best matches the observed channel data. This process is

inspired in Matched Field Processing (MFP), a well-known technique used in low frequency

(less than 2 kHz) source localization problems. The EF is designed to operate in usual

underwater acoustic communications frequencies, i.e., between 10 kHz and 30 kHz, employ-



5.1. Concluding remarks 125

ing a ray/beam trace model to generate the CIR replicas for a search space of candidates

driven by a set of “a priori” physical parameters. The focalization generates as output an

“a posteriori” noiseless CIR replica with the best fitness in the Bartlett objective function

sense that correlates modeled CIR candidates with a CIR estimate. Therefore, the noise

error in CIR estimates is replaced by some degree of modeling error, which is expected to be

small enough when the EF is successful, thus improving the communication performance.

Also, the understanding on the influence of the acoustic propagation physical parameters in

high-frequency underwater communications is essential to efficiently select an appropriate

search space, increasing the chance of EF success to mitigate modelling error.

The EPTR processor was tested with real data, whose results indicated the feasibility

of the method. In this sense, the EPTR contributes to a step forward in the direction on

understanding of how physical modelling can help to estimate and compensate channels in

real underwater acoustic communications. It has an innovative character in the sense that,

for the best knowledge of the author, no report was found on equalization with real data

using physical models. A drawback of the EPTR is the increased complexity, where the

computational time depends of the number of “a priori” CIR replicas in the search space,

which in our study was exhaustively searched for optimization. The advantages of the EPTR

are (i) to increase the communications performance through the substitution of noise effects

in channel estimates by the reduced modelling error, under the assumption that the EF

is successful in tracking the actual channel; and (ii) to use the environmental information

to improve channel identification in communications, thus contributing to make the system

more robust for the employment in different scenarios.

Acoustic communication transmissions performed during the “Underwater Acoustic Net-
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work 2011” experiment conducted on the coast of Trondheim (Norway) were used as test

cases for the proposed algorithms. Several quadrature-phase-shift-key digitally modulated

data sets containing a low-resolution image were transmitted at 4 kbit/s between a moored

source and a 16-hydrophone vertical moored array situated at 890 meters range. The data

sets collected in the sea trial are processed with EPTR, being then compared to RegL1-PTR

and to a standard PC-PTR. The PC-PTR is the standard time-reversal receiver that uses

pulse-compressed CIR estimates; the RegL1-PTR is a modified version of the PTR that

employs sparse channel estimates obtained by `1-norm regularization, the PC-EPTR is the

proposed method of this work that employs EF based on physical modelling to feed the

time-reversal filters, where EF is the environmental focalizer that generates the noise-free

CIR that best matches a pulse-compressed CIR estimate; and RegL1-EPTR is a modified

version of the PC-EPTR whose difference is to use a RegL1 CIR estimate, instead of a PC

estimate, in the EF processor. The experimental results show that the proposed EPTR

method (both using PC and RegL1 in EF) outperforms the conventional PC-PTR, robustly

yielding mean square error gain in a range of approximately 1 to 8 dB.

The present work showed evidence to support that:

� The most important part of the seabed for the communication signals propagation at

high frequency is the sediment layer. More specifically, the sediment compressional

sound speed affects the CIR time-spreading and the path delays in the reduced-time

axis, which is an important feature to consider when choosing candidates for the search

space of EF, given that path delay is more important than path amplitude for channel

compensation.
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� The Sound Speed Profile (SSP) is known as an important parameter for acoustic

propagation, but it was not inverted for in the EF tests of this work. Instead, it

was used SSP data from an in situ CTD measurement, aiming to avoid generating

unrealistic replicas. The EPTR performed well without the inversion of the SSP in

this work, which infers that EF may be able to compensate the SSP variability with an

artificial variability of the parameter being inverted. However, this conclusion may not

be final because perhaps in another environment the EPTR may require SSP inversion

to performed well, and therefore this issue must be treated with caution.

� The geometric parameters are those with a highest impact on the CIR and PTR

processing. The movement of sensors or scatter points during the transmission time

cause Doppler distortion, which can be severe even for small velocities. If not mitigated

or compensated, Doppler effect can severely affect the communications performance.

In case of non intentional motion applications (e.g., fixed nodes), one may significantly

reduce such effects by employing moored sensors and mitigating the residual distortion

with resampling techniques. Further, the acoustic propagation is very sensitive to the

variation of geometric parameters. In this sense, the EF should be set to have an

“a priori” search space with high resolution for geometric parameters. Thus, a wide

range of different modeled CIR candidates would be generated, increasing the chance

of reaching a small misfit between the observed CIR and the “a posteriori” CIR replica.

� For environmental focalization, small wavelength effects suggest the usage of high res-

olution parametrization in the “a priori” geometric parameters of the search space;

the low influence of sub-bottom parameters suggests their exclusion from the opti-
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mization, thus saving computational cost without significant loss of communications

performance; and the high sensitivity to sediment compressional sound speed suggests

to increase its search space sampling, aiming to explore its delay shift feature. Such

empirical knowledge, learned in Chap. 4 with the simulated sensitivity tests regarding

the impact of environmental parameters variability on the CIR and time-reversal per-

formance, was applied with real data to the EPTR in Chap. 5, achieving reasonably

successful message recovery.

Moreover, a remarkable aspect of the EPTR resides in providing inverted physical pa-

rameters as output, since the EF algorithm works analogously to a standard acoustic in-

version processor, but with the difference of employing reduced search space, small enough

to be used with exhaustive search but with enough size to still generate an accurate CIR

for time-reversal processing. The estimation of accurate “a posteriori” physical parameters

was not the goal of this work, which concerns specifically to improve CIR identification for

time-reversal communications.

The EF generates a set of physical parameters that optimize the objective function

designed to select the CIR replica that best matches a CIR estimate used as reference,

no matter if the obtained parameters represent the actual parameters of the environment.

This is enough to increase PTR performance but it is not enough for acoustic inversion.

In this sense, the author suggest that the EPTR design could be modified to include, in

future work, large search spaces and a global optimization tool as, e.g., genetic algorithm

or simulated annealing. Such procedure could be useful to design a system able to jointly

perform accurate acoustic inversion and underwater acoustic communications.
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5.2 Contributions

The contributions of this work may be summarized as follows:

1. The physical parameters sensitivity was tested in high-frequency (12 kHz) shallow

water communication simulations. The information reached are useful to get directions

on how to appropriately set a input search space for high-frequency environmental

focalization processing.

2. A new processor EPTR is proposed to improve PTR communications using a phys-

ical model-based approach for channel identification. The EF algorithm, inspired in

matched field processing, is proposed as part of the EPTR.

3. Real data of coherent underwater acoustic communications at 4 kbit/s were success-

fully processed with EPTR, obtaining enhancement of performance, with results that

outperform the conventional PC-PTR processor and, in few cases, also outperformed

the sparse RegL1-PTR processor.

These contributions are summarized in the following published material:

1. L. P. Maia, A. Silva and S. M. Jesus, “Time-variant adaptive passive time-reversal

equalizer and a perspective for environmental focusing method”, in Proceedings of

the 4th International Conference on Sensor Networks (SENSORNETS’15), Angers,

France, pages 103-108, February 2015.

2. L. P. Maia, A. Silva and S. M. Jesus, “A perspective for time-varying channel com-

pensation with model-based adaptive passive time-reversal”, Sensors & Transducers

Journal, ISSN: 2306-8515, e-ISSN 1726-5479, vol.189 (6), pages 89-96, June 2015.
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3. L. P. Maia, A. Silva and S. M. Jesus, “On equalization for mobile digital acoustic

underwater communications”, Poster in Ciência 2016, Lisboa, Portugal, July 2016.

4. L. P. Maia, A. Silva and S. M. Jesus,“Experimental results of environmental-based

passive time reversal in underwater communications”, MTS/IEEE/OES Oceans’2017

Conference, Aberdeen, United Kingdom, June 2017.

5. L. P. Maia, A. Silva and S. M. Jesus,“Environmental model-based time-reversal under-

water communications”, IEEE Access Journal, DOI 10.1109/ACCESS.2017.2724304,

June 2017.

6. L. P. Maia, A. Silva and S. M. Jesus,“A long term analysis of environmental model-

based time-reversal communications in the UAN’11 Experiment”, Journal of the Acous-

tic Society of America - Express Letters, (submitted), September 2017.

5.3 Future work

Future directions are pointed as follows:

� To perform long term performance analysis of real data of other experiments for

EPTR communications, testing the effects of different scenarios on the EF ability

to generate realistic replicas to represent the actual channel. To test several scenarios

with particular environmental parameters, bathymetry and transect ranges, as well as

to test different configuration of communications parameters as, e.g, bit rate, digital

modulation scheme, carrier frequency and pulse bandwidth;

� To implement other types of objective function than the Bartlett processor in the

environmental focalization. To insert a global optimization algorithm in the process
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to select the maximum “a posteriori” set of parameters from the “a priori” search

space. The global optimizer would make it possible to extend the size of the search

space, bringing probable advantages to the ability of the EF algorithm to generated

CIR replica with very low modelling error.

� To design an algorithm to improve CIR synchronization, thus avoiding that the mis-

alignment between the modeled CIR and the observed CIR performed during the pro-

cessing of the EF may impair the performance of the EPTR.



Appendix A

Derivation of the minimum variance
unbiased estimator

Classical channel estimation with `2-norm - MVU

Assume the system defined by (2.9). The multivariate probability density function when

w ∼ N (0, σ2
wI) for the observed vector y given that true g occurs is

p(y; g) =
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(A.1)

where w denotes noise, σ2
w denotes the noise variance, g denotes the channel impulse response

and S is a Toeplitz matrix of the transmitted signal s.

If the Cramer-Rao Lower Bound theorem is satisfied, then it is possible to determine the

optimal MVU estimator, as described in [35]. Such theorem defines that the MVU estimator

exists if

∂ ln p(y; g)

∂g
= (Cĝ)−1(ĝ− g) (A.2)

where ĝ is the estimator and Cĝ denotes the covariance matrix of the estimator. Developing

the left side of equation (A.2) one can deduce the estimator and its covariance, as follows

∂
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Employing the partial derivative identities
∂bTx

∂x
= b and

∂xAxT

∂x
= 2Ax for A symmetric

matrix yields

∂ ln p(y; g)

∂g
=

1

σ2
w

[STy− STSg] (A.4)

=
STS

σ2
w

[(STS)−1STy− g] (A.5)

assuming that STS is invertible. Therefore the MVU estimator of the time-invariant impulse

response is

ĝ = (STS)−1STy (A.6)

and its covariance matrix is

Cĝ = σ2
w(STS)−1 (A.7)

The estimator variance depends on the input signal matrix STS. Aiming at minimizing the

variance of the MVU estimator, the input vector s must be chosen to make STS as near to

a diagonal matrix as possible. Given the notation [S]ij = s[i− j], one can write

[STS]ij =
∑
n=1

Ns[n− i]s[n− j] i = 1, 2, ..., p; j = 1, 2, ..., p (A.8)

For N large, the approximation bellow is valid and can be seen as a correlation function of

the deterministic sequence s[n] of the elements of input vector s.

[STS]ij ≈
N−1−|i−j|∑

n=0

s[n]s[n− |i− j|] (A.9)

Therefore, matrix STS has now the form of a symmetric Toeplitz autocorrelation matrix.

Since the input autocorrelation is given by

rss[k] =
1

N

N−1−k∑
n=0

s[n]s[n+ k] (A.10)
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then one can write

STS = N


rss[0] rss[1] ... rss[p− 1]

rss[1] rss[0] ... rss[p− 2]
...

...
. . .

...

rss[p− 1] rss[p− 2] ... rss[0]

 (A.11)

and for STS to be diagonal, it is required rss[k] = 0 k 6= 0. In other words, the choice of

the probe signal in MVU is concerned with a signal with high autocorrelation and very low

cross-correlation.
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Derivation of the regularized `1-norm
estimator

The sparse solution for an under-determined linear system [78] as in (2.9) requires to solve

the optimization problem over the `0-norm

ĝ = arg min
g∈CJ×1

‖g‖0 {s.t.} y = Sg (B.1)

under the assumption that the g is sparse, i.e., if ‖g‖0 � J , where J is the length of g and

the `0-norm represents the number of non-zero elements in the vector g, that is

‖g‖0 = {# of n : h(n) 6= 0} (B.2)

This is a NP-hard problem [79] , whose computational complexity isO(2n), thus non-practical

when n is large. If the signals is sparse (‖g‖0 � J) then the problem is tractable as the

solution to

ĝ = arg min
g∈CJ×1

‖g‖0 {s.t.} ‖Sg − y‖2 < εw (B.3)

where εw > 0 is a threshold error. However, both problems (B.1) and (B.3) are non-convex.

In fact, for the `p-norm with 0 < p < 1, the problem belongs to the class of non-convex

optimization problems, much harder to solve than convex optimization. Feasibility rules

must be observed, obeying criteria as, e.g., the Restricted Isometry defined in [51] as follows:

Definition (Restricted Isometry Constants):

Let F be a matrix with the finite collection of vectors (vj)j∈J ∈ Rp as columns. For
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every integer 1 < S < |J |, we define the restricted isometry constants to be the smallest
quantity δS such that FT obeys

(1− δS)‖2 ≤ ‖FT c‖2 ≤ (1 + δS)‖2 (B.4)

for all subsets T ⊆ J of cardinality at most S, and all real coefficients (cj)j∈T .

Aiming at avoiding the difficulty on non-convexity and ensure a unique solution, one can find

a suboptimal solution by relaxing the non-convex `0-norm into a convex norm. In particular,

the interest is in the `1-norm since is the smaller norm that is still convex. Thus, relaxing the

`0-norm to the `1-norm, a straightforward suboptimal solution is yielded if RIP is verified.

The method that solves the minimization problem is named Basis Pursuit [52], being stated

as

ĝ = arg min
g∈CJ×1

‖g‖1 {s.t.} y = Sg (B.5)

Or using sparse approximation to make the problem more tractable as

ĝ = arg min
g∈CJ×1

‖g‖1 {s.t.} ‖Sg − y‖2 ≤ εw (B.6)

These convex optimization solutions can adopt an interior point method [53] or a greedy

algorithm. Greedy pursuit algorithms attempt to find an approximate solution for the sparse

optimization problem. They are faster than convex optimization but slightly less precise.

Some of the greedy pursuit algorithms are in the family of Matching Pursuit (MP) [80] as,

e.g., Orthogonal MP [81], Gradient MP [82] and Compressive Sampling MP [83], among

others.

Out of the MP family but also solvable with greedy algorithms are the LARS [54] and

LASSO [55]. In particular, LASSO proposes to minimize the least square error subject to

the `1-norm of the solution vector that should be smaller than some noise threshold εw, and



137

it is stated as

ĝ = arg min
g∈CJ×1

‖y − Sg‖2
2 {s.t.} ‖g‖1 < εw (B.7)

Equation (B.7) can be equivalently rewritten as an unconstrained optimization problem,

yielding the core of the RegL1 estimator, that is

ĝ = arg min
g
{1

2
‖Sg− y‖2

2 + γ‖g‖1} (B.8)

where the scalar γ is a regularization parameter contained in the interval [0,∞).

A greedy algorithm must update the entries of the solution vector g by solving a penalized

least squares problem, projecting the measurement vector y onto the space spanned by the

active columns of S plus a penalization term. A suitable algorithm to solve this problem,

among others options, is the IRLS [56]. Assume G as a diagonal matrix with diag(G) = |g|,

thus we have ‖g‖1 ' gTG−1g. Note that the `1-norm is showed here as an adaptively-

weighted version of the squared `2-norm. With this approximation, the estimator is given

by

ĝ = arg min
g
{γ gTG−1

k−1g +
1

2
‖Sg− y‖2

2} (B.9)
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Outliers sensors blocker

Doppler Spectrum (DS) is defined by the sum over the delay-axis of a Doppler Spreading

Function (DSF) [66]. Given the impulse response hl[n, k] of the l − th channel, the DSF is

Sl[ξ, k] =
N−1∑
n=0

hl[n, k]e−j(2π/N)ξn (C.1)

and the DS is

S̃l[ξ] =
1

K

K−1∑
k=0

Sl[ξ, k] (C.2)

The EPTR is designed to reject sensors with outliers in the DS maximum peak. The rejection

is based on verifying if the frequency shift of the DS main peak is within an arbitrary

threshold of error on the frequency axis. The thresholds defining the frequency range in this

work is set to be one quarter of the whole region available on the frequency axis, centered at

zero frequency. The underlying assumption to this choice is that the threshold is expected

to be close to zero frequency because an hypothetically perfect time compression/dilation

compensation would ideally generate a spectrum without any frequency offset.

Figure C.1 shows, for a signal collected on May 24, the DSF (a) and the DS (b) relative

to a sensor whose the signal has successful resampling compensation (hydrophone 7 at 50.1

m depth) and the ill-posed DSF (c) and DS (d) relative to a sensor with failed compensation

(hydrophone 16 at 14.1 m depth). One can see that the maximum peak is at almost zero
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(a) (b)

(c) (d)

Figure C.1: DSF (a) and the DS (b) relative to a sensor whose the signal has successful resampling
compensation (hydrophone 7 at 50.1 m depth). Ill-posed DSF (c) and DS (d) relative to a sensor
with failed compensation (hydrophone 16 at 14.1 m depth).

frequency in the sensors with successful compensation and has several undefined strong peaks

for the sensor with failed compensation, being its maximum peak out of the thresholded

region. This means that, in the latter case, there is still an excessive uncompensated Doppler.

Sensors with this characteristics, expected to be in small number, are assumed as outliers

and are excluded from PTR processing.

Figure C.2 shows the DS maximum peak of all hydrophones, for the data collected on

May 24 (a) and on May 27 (b). The two dashed lines denotes the threshold limiting a quarter

of the available frequency in the vertical axis, centered at the zero-frequency. The red circles

shows the outliers and the green circles the accepted sensors. One can observe that the

hydrophone number 16 at 14.1 m and the hydrophone number 3 at 66.1 m in the Fig. C.2

(a) are the rejected sensors by the outliers blocker due to strong DS peak distortion. All
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(a)

(b)

Figure C.2: Outliers rejection for PTR for data collected on May 24 (a) and May 27 (b). Each
circle corresponds to the Doppler spectrum maximum peak estimated at each hydrophone. The
marks filled with red color denote the outliers and the marks filled with green color denotes the
accepted sensors. The two dashed lines shows the thresholds for rejection.

the others sensors have DS peak inside the thresholded frequency region, having sufficiently

small frequency shift, thus being accepted to be employed in the PTR processing. Table C.1

shows the number of rejected outliers sensors for each data set.

Table C.1: Blocked sensors per data set in the 16-hydrofones VLA.

Signal ID number blocked hyd. PC blocked hyd. RegL1

241 2 (14.1m and 66.1m) 3 (14.1m, 62.1m and 66.1m)

271 0 0

272 0 0

273 0 0

274 0 0

275 0 1 (hyd. 74.1m)

276 0 1 (hyd. 70.1m)

277 0 0

278 0 0

279 0 0



Appendix D

Bi-static scattering geometry

This appendix is inspired by the bi-static scattering geometry model described in details

in [65]. A closed form expression can be derived for a simplified time-variant underwater

waveguide with iso-velocity SSP and whose rays connecting source and receiver have a single

reflection on boundaries. The scenario is based on the bi-static scattering geometry, from

which can be calculated the time compression/stretch factor, the time delay and the Doppler

shift expressions. Figure D.1 shows the bi-static scattering geometry, where Ro,t is the

transmitter-to-scatter-point initial range, Ror is the scatter-point-to-receiver initial range and

~VX • n̂X represents the projection of a given velocity vector (~Vt, ~Vr or ~Vs) in the propagation

path direction. The corresponding unitary vectors are represented by n̂t and n̂r.

Figure D.1: Bi-static scattering geometry. The transmitter, the point scatterer and the receiver
are moving with constant velocity.

The complex envelop of a passband signal transmitted in the scenario of bi-static scat-
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tering geometry, at which there are source motion, receiver motion and scatter point motion

with constant velocity, is given by [65]

y(t) = s(α(t− τA))ej2πΦAt (D.1)

where the compression/stretch factor is α, the Doppler frequency shift is ΦA and τA denotes

the time delay after the ray travel from the source to the receiver. They are defined as

follows

α =
(1− ~Vs • n̂tc )(1− ~Vr • n̂rc )

(1− ~Vs • n̂rc )(1− ~Vt • n̂tc )
(D.2)

The time delay is given by

τA =

1− ~Vs • n̂rc
1− ~Vs • n̂tc

Ro,t +Ro,r

(1− ~Vr • n̂rc )c
(D.3)

and Doppler frequency shift is

ΦA = −(1− α)fc (D.4)

where the sound speed in the medium is c, the carrier frequency is fc and the symbol •

denotes dot product.

For more concise formulation, consider the compression/stretch factor redefined as β =

α− 1 and substitute ΦA in (D.2), which yields

y(t) = s((1 + β)(t− τA))ej2πfcβt (D.5)

Thus, the received signal, after disregard the travel time under the assumption of perfect

synchronization, is

y(t) = s((1 + β)t)ej2πfcβt; (D.6)

where the compression/stretch factor β is

β =
(1− ~Vs • n̂tc )(1− ~Vr • n̂rc )

(1− ~Vs • n̂rc )(1− ~Vt • n̂tc )
− 1 (D.7)
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Extension to a short range isovelocity SSP time-variant waveguide

The bi-static scattering geometry model can be extended to a short range time-variant

waveguide with one reflected path for each boundary. This is an attractive procedure since

the scenario is similar to a simplified shallow water waveguide with nearly isovelocity SSP and

single reflection in the boundaries. Figure D.2 shows the simplified waveguide scenario. The

Figure D.2: A simplified underwater waveguide with isovelocity SSP and single reflection in the
boundaries.

path 0 is the direct, the path 1 is surface-reflected and the path 2 is bottom-reflected. The

time-variant CIR in baseband equivalent representation, assuming the approach described

in [14], is given by

h(t, τ) =
∑
p

1

1 + βp
Apδ

(
τ + βpt−Dp

1 + βp

)
e
j2πfc

βp
1+βp

(t−τ)
; p = 0, 1, 2. (D.8)

where Ap denotes path gain and Dp denotes path delay, which can be appropriately computed

using a ray tracing model. The complex envelope of the received signal after cross the time-

variant waveguide with equivalent baseband impulse response h(t, τ) is

y(t) =

∫
s(t− τ)h(t, τ)dτ (D.9)

where s(t) is the complex envelope of the transmitted signal.
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Depending of the path type, the compression/stretch factor for the direct path (β0), the

surface-reflected path (β1) and bottom-reflected path (β2) are, respectively, given by

β0 =
1− ~Vr • n̂R,0c
1− ~Vt • n̂R,0c

− 1 (D.10)

β1 =
(1− ~Vs • n̂T,1c )(1− ~Vr • n̂R,1c )

(1− ~Vs • n̂R,1c )(1− ~Vt • n̂T,1c )
− 1 (D.11)

β2 =
1− ~Vr • n̂R,2c
1− ~Vt • n̂T,2c )

− 1 (D.12)

In the particular case of assuming a moving source with constant velocity ~Vt, an static

array (~Vr = ~0) and flat static surface (~Vs = ~0), the factor βp, where p represents the path,

becomes

βp =
1

1− ~Vt • n̂t,pc
− 1 ⇒ βp =

1

1− ‖~Vt‖cosθp
c

− 1 (D.13)

where θp is the launching angle of the path relative to the source velocity direction.

Since each path have a different βp, it results that each path is affected by a different

amount of Doppler.
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